International audienceThe corrosion mechanisms by liquid aluminum of three industrial materials have been studied: unalloyed steel (UAS), and ferritic and modified pearlitic cast irons (FCI and PCI, respectively). The behavior of these materials when in contact with liquid aluminum is different. Aluminum diffuses deep into the UAS and forms intermetallic compounds with iron at the surface and in the steel matrix. At the surface, only Fe2Al5 and FeAl3 are found. In the matrix, FeAl2 also is formed in agreement with the equilibrium Fe-Al diagram. From the matrix to FeAl2, the Al content in the ferrite increases progressively until Al saturation is reached. At this step, black elongated precipitates (Al4C3 and/or graphite) appear. Graphite lamellas present in both FCI and PCI constitute an efficient barrier to the Al diffusion. The high silicon content of the FCI leads to the formation of a phase free from Al and saturated in Si. For the PCI, a thin layer rich in Al and Si, which is formed between the matrix and Fe2Al5, limits the diffusion of atoms. The effects of Cr and P added in the PCI also are discussed
Direct measurements of Single vibronic Level InterSystem Crossing (SLISC) have been performed on the fluorenone molecule in the gas phase, by time resolved photoelectron and photoion spectroscopy. Vibronic transitions above the S1 nπ* origin were excited in the 432-420 nm region and the decay of S1 and growth of T1(3)ππ* could be observed within a 10 ns time domain. The ionization potential is measured as 8.33 ± 0.04 eV. The energy of the first excited triplet state of fluorenone, T1 has been characterized directly at 18 640 ± 250 cm(-1). The internal conversion of S1 to S0 is found to amount to ∼15% of the population decay, thus ISC is the dominant electronic relaxation process. ISC, although favored by the S1(1)nπ*-T1(3)ππ* coupling scheme, is 3 orders of magnitude less efficient than in the similar molecule benzophenone. Thus, the planarity of the fluorenone molecule disfavors the exploration of the configuration space where surface crossings would create high ISC probability, which occurs in benzophenone through surface crossings. The time evolution of S1 fluorenone is well accounted for by the statistical decay of individual levels into a quasi-continuum of T1 vibronic levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.