Samples of cerium were exposed to hydrogen under controlled conditions causing cerium hydride sites to nucleate and grow on the surface. The hydriding rate was measured in situ, and the hydrides were characterised using secondary ion mass spectrometry, scanning electron microscopy, and optical microscopy. The results show that the hydriding rate proceeded more quickly than earlier studies. Characterisation confirmed that the hydrogen is confined to the sites. The morphology of the hydrides was confirmed to be oblate, and stressed material was observed surrounding the hydride, in a number of cases lathlike features were observed surrounding the hydride sites laterally with cracking in the surface oxide above them. It is proposed that during growth the increased lattice parameter of the CeH2 induces a lateral compressive stress around the hydride, which relieves by the ca. 16% volume collapse of the γ-Ce to α-Ce pressure induced phase transition. Cracking of the surface oxide above the laths reduces the diffusion barrier to hydrogen reaching the metal/oxide interface surrounding the hydride site and contributes to the anisotropic growth of the hydrides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.