Abstract. The three carbon gases carbon monoxide (CO), carbon dioxide (CO 2 ), and methane (CH 4 ) are important atmospheric constituents affecting air quality and climate. The near-infrared nadir spectra measured by SCIAMACHY on ENVISAT contain information on the vertical columns of these gases which we retrieve using a modified DOAS algorithm (WFM-DOAS or WFMD). Our main data products are CO vertical columns and dry-air column averaged mixing ratios of methane (CH 4 ) and CO 2 (denoted XCH 4 and XCO 2 ). For CO and CH 4 we present new results for the year 2003 obtained with an improved version of WFM-DOAS (WFMDv0.5) retrieved from Level 1 version 4 (Lv1v4) spectra. This data set has recently been compared with a network of ground based FTIR stations. Here we describe the WFMDv0.5 algorithm, present global and regional maps, and comparisons with global reference data. We show that major problems of the previous versions (v0.4 and v0.41) related to the varying ice-layer on the SCIAMACHY channel 8 detector have been solved. Compared to MOPITT the SCIAMACHY CO columns are on average higher by about 10-20%. Regionally, however, especially over central South America, differences can be much larger. For methane we present global and regional maps which are compared to TM5 model simulations performed using standard methane emission inventories. We show that methane source regions can be clearly detected with SCIAMACHY. We also show that the methane data product can be significantly further improved using Lv1v5 spectra with improved calibration. For CO 2 we present three years of SCIAMACHY CO 2 measurements over Park Falls, Wisconsin, USA, retrieved from Lv1v5. We show that the quality of CO 2 retrieved from Correspondence to: M. Buchwitz (michael.buchwitz@iup.physik.uni-bremen.de) these spectra is significantly higher compared to WFMDv0.4 XCO 2 retrieved from Lv1v4.
at immersion and at emersion, at latitudes ranging from 46• S to 20• N, and are thus global features of the stratosphere. The profiles of temperature gradients exhibit a clear cutoff at the adiabatic lapse rate, indicating that fluctuations lead to marginal convective instabilities. Although ray crossing can also cause an apparent cutoff of the temperature gradients, we estimate it probably does not play an important role in the observed cutoff, at least for the larger structures under study. The vertical power spectra of fluctuations show a general power law behavior, with an exponent close to −3, between vertical wavelengths of ∼5 and 50 km. The finite stellar diameter and ray crossings can distort the real spectra, and we can only conclude that the original power spectra have slopes between −2 and −3. The horizontal structure of the atmosphere exhibits typical aspect (horizontal-to-vertical) ratios of 15-45, with a tail in the distribution with values as high as 100-200 for some structures. Finally, the horizontal spectrum of fluctuations is a power law with an exponent close to −4 (between horizontal wavelengths of ∼25 and 250 km), if we assume it is separable from the vertical spectrum.
In this study, the amount of profile information that can be retrieved from such measurements is investigated for the trace gas NO 2 . Sensitivity studies on synthetic data are performed for a variety of representative measurement conditions including two wavelengths, one in the UV and one in the visible, two different surface spectral reflectances, various lines of sight (LOS), and for two different flight altitudes.The results demonstrate that the AMAXDOAS measurements contain useful profile information, mainly at flight altitude and below the aircraft. Depending on wavelength and LOS used, the vertical resolution of the retrieved profiles is as good as 2 km near flight altitude. Above 14 km the profile information content of AMAXDOAS measurements is sparse. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere and the UTLS region.
Abstract.A recent development in ground-based remote sensing of atmospheric constituents by UV/visible absorption measurements of scattered light is the simultaneous use of several directions with small elevation angles in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers such as NO 2 , BrO or O 3 to be retrieved.In this study, the amount of profile information that can be retrieved from such measurements on aircraft is investigated for the trace gas NO 2 . A Sensitivity study on synthetic data is performed for a combination of four lines of sight (LOS) (0 • (nadir), 88 • , 92 • , and 180 • (zenith)) and three wavelength regions [center wavelengths: 362.5 nm, 437.5 nm, and 485.0 nm]. The method used in this work is a combination of two previously established methods described in Petritoli et al. (2002) and Wang et al. (2004). The investigation presented here demonstrates the potential of this LOS/wavelengths setup to retrieve a significant amount of profile information from airborne multiax is differential optical absorption spectrometer (AMAXDOAS) measurements with a vertical resolution of 3.0 to 4.5 km in the lower troposphere and 2.0 to 3.5 km near flight altitude. Above 13 km the profile information content of AMAXDOAS measurements is sparse. The retrieval algorithm used in this work is the AMAXDOAS profile retrievalalgorithm (APROVAL).Further, retrieved profiles with a significant amount (up to 3.2 ppbv) of NO 2 in the boundary layer over the Po-valley (Italy) are presented. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.