We present accurate photometric redshifts in the 2-deg 2 COSMOS field. The redshifts are computed with 30 broad, intermediate, and narrow bands covering the UV (GALEX), Visible-NIR (Subaru, CFHT, UKIRT and NOAO) and mid-IR (Spitzer/IRAC). A χ 2 template-fitting method (Le Phare) was used and calibrated with large spectroscopic samples from VLT-VIMOS and Keck-DEIMOS. We develop and implement a new method which accounts for the contributions from emission lines ([O II], Hβ, Hα and Lyα) to the spectral energy distributions (SEDs). The treatment of emission lines improves the photo-z accuracy by a factor of 2.5. Comparison of the derived photo-z with 4148 spectroscopic redshifts (i.e. ∆z = z s − z p ) indicates a dispersion of σ ∆z/(1+zs) = 0.007 at i + AB < 22.5, a factor of 2 − 6 times more accurate than earlier photo-z in the COSMOS, CFHTLS and COMBO-17 survey fields. At fainter magnitudes i + AB < 24 and z < 1.25, the accuracy is σ ∆z/(1+zs) = 0.012. The deep NIR and IRAC coverage enables the photo-z to be extended to z ∼ 2 albeit with a lower accuracy (σ ∆z/(1+zs) = 0.06 at i + AB ∼ 24). The redshift distribution of large magnitude-selected samples is derived and the median redshift is found to range from z m = 0.66 at 22 < i + AB < 22.5 to z m = 1.06 at 24.5 < i + AB < 25. At i + AB < 26.0, the multi-wavelength COSMOS catalog includes approximately 607,617 objects. The COSMOS-30 photo-z enable the full exploitation of this survey for studies of galaxy and large scale structure evolution at high redshift.
The Cosmic Evolution Survey (COSMOS) is designed to probe the correlated evolution of galaxies, star formation, active galactic nuclei (AGNs), and dark matter (DM) with large-scale structure (LSS) over the redshift range z > 0:5Y 6. The survey includes multiwavelength imaging and spectroscopy from X-rayYtoYradio wavelengths covering a 2 deg 2 area, including HST imaging. Given the very high sensitivity and resolution of these data sets, COSMOS also provides unprecedented samples of objects at high redshift with greatly reduced cosmic variance, compared to earlier surveys. Here we provide a brief overview of the survey strategy, the characteristics of the major COSMOS data sets, and a summary the science goals.
We report on a complete sample of 7 luminous early-type galaxies in the Hubble Ultra Deep Field (UDF) with spectroscopic redshifts between 1.39 and 2.47 and to K AB < 23. Using the BzK selection criterion we have pre-selected a set of objects over the UDF which fulfill the photometric conditions for being passively evolving galaxies at z > 1.4. Low-resolution spectra of these objects have been extracted from the HST+ACS grism data taken over the UDF by the GRAPES project. Redshift for the 7 galaxies have been identified based on the UV feature at rest frame 2640 < λ < 2850 Å. This feature is mainly due to a combination of FeII, MgI and MgII absorptions which are characteristic of stellar populations dominated by stars older than ∼ 0.5 Gyr. The redshift identification and the passively evolving nature of these galaxies is further supported by the photometric redshifts and by the overall spectral energy distribution (SED), with the ultradeep HST+ACS/NICMOS imaging revealing compact morphologies typical of elliptical/early-type galaxies. From the SED we derive stellar masses of > ∼ 10 11 M ⊙ and ages of ∼ 1 Gyr. Their space density at < z >= 1.7 appears to be roughly a factor of 2-3 smaller than that of their local counterparts, further supporting the notion that such massive and old galaxies are already ubiquitous at early cosmic times. Much smaller effective radii are derived for some of the objects compared to local massive ellipticals, which may be due to morphological K corrections, evolution, or the presence of a central point-like source. Nuclear activity is indeed present in a subset of the galaxies, as revealed by them being hard X-ray sources, hinting to AGN activity having played a role in discontinuing star formation.
Spitzer IRAC selection is a powerful tool for identifying luminous AGN. For deep IRAC data, however, the AGN selection wedges currently in use are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGN and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high redshift star-forming galaxies selected via the BzK, DRG, LBG, and SMG criteria. At QSO-luminosities of log L 2−10keV (ergs s −1 )≥ 44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 38% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 52% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log N H (cm −2 ) = 23.5 ± 0.4). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGN, it is incomplete to lowluminosity and host-dominated AGN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.