Long-term stability of monoclonal antibodies to be used as biologics is a key aspect in their development. Therefore, its possible early prediction from accelerated stability studies is of major interest, despite currently being regarded as not sufficiently robust. In this work, using a combination of accelerated stability studies (up to 6 months) and first order degradation kinetic model, we are able to predict the long-term stability (up to 3 years) of multiple monoclonal antibody formulations. More specifically, we can robustly predict the long-term stability behaviour of a protein at the intended storage condition (5 °C), based on up to six months of data obtained for multiple quality attributes from different temperatures, usually from intended (5 °C), accelerated (25 °C) and stress conditions (40 °C). We have performed stability studies and evaluated the stability data of several mAbs including IgG1, IgG2, and fusion proteins, and validated our model by overlaying the 95% prediction interval and experimental stability data from up to 36 months. We demonstrated improved robustness, speed and accuracy of kinetic long-term stability prediction as compared to classical linear extrapolation used today, which justifies long-term stability prediction and shelf-life extrapolation for some biologics such as monoclonal antibodies. This work aims to contribute towards further development and refinement of the regulatory landscape that could steer toward allowing extrapolation for biologics during the developmental phase, clinical phase, and also in marketing authorisation applications, as already established today for small molecules.
The superficial regions of the left vagus nerves of a dog were selectively stimulated with 39-electrode spiral cuffs having 13 circumferential groups of three electrodes (GTE) to modulate the function of the innervated internal organs and glands. Under general anaesthesia, the cuffs were chronically implanted around the nerve in the neck in two adult Beagle dogs and remained viable for 16 months. The regions were stimulated with biphasic, rectangular current pulses (2 mA, 200 µs, 20 Hz) delivered to the group of GTE lying close to the region innervating the specific internal organs or glands. The results showed that specific electrode configurations had actions on the heart (GTE 9), lungs (GTE 4) and pressure in the urinary bladder (GTE 1). It was also shown that GTE no. 10 significantly modified the endocrine function of the pancreas. The results of this study clearly demonstrate that internal organs and glands can be selectively stimulated via the selective stimulation of innervating superficial regions of the autonomous peripheral nerve.
Monoclonal antibodies
are the fastest growing class of therapeutics.
However, aggregation limits their shelf life and can lead to adverse
immune responses. Assessment and optimization of the long-term antibody
stability are therefore key challenges in the biologic drug development.
Here, we present a platform based on the analysis of temperature-dependent
aggregation data that can dramatically shorten the assessment of the
long-term aggregation stability and thus accelerate the optimization
of antibody formulations. For a set of antibodies used in the therapeutic
areas from oncology to rheumatology and osteoporosis, we obtain an
accurate prediction of aggregate fractions for up to three years using
the data obtained on a much shorter time scale. Significantly, the
strategy combining kinetic and thermodynamic analysis not only contributes
to a better understanding of the molecular mechanisms of antibody
aggregation but has already proven to be very effective in the development
and production of biological therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.