We describe the identification and DNA-binding properties of nuclear proteins from rat L6 myoblasts which recognize an interspecies conserved 3' untranslated segment of proal(I) collagen cDNA. Levels of the two prootl(I) collagen RNAs, present in L6 myoblasts, decreased drastically between 54 and 75 h after induction of myotube formation in serum-free medium. Both mRNAs contained a conserved sequence segment of 135 nucleotides (termed tame sequence) in the 3' untranslated region that had 96% homology to the human and murine procLl(I) collagen genes. The cDNA of this tame sequence was specifically recognized by nuclear protein(s) from L6 myoblasts, as judged by gel retardation assays and DNase I footprints. The tame-binding protein(s) was able to recognize its target sequence on double-stranded DNA but bound also to the appropriate single-stranded oligonucleotide. Protein that bound to the tame sequence was undetectable in nuclear extracts of L6 myotubes that did not accumulate the two collagen mRNAs. Therefore, the activity of this nuclear protein seems to be linked to accumulation of the sequences that it recognizes in vitro. The collagen RNAs and the nuclear tame-binding proteins reappeared after a change of medium, which further suggests that the RNAs and the protein(s) are coordinately regulated.
We describe the identification and DNA-binding properties of nuclear proteins from rat L6 myoblasts which recognize an interspecies conserved 3' untranslated segment of pro alpha 1 (I) collagen cDNA. Levels of the two pro alpha 1 (I) collagen RNAs, present in L6 myoblasts, decreased drastically between 54 and 75 h after induction of myotube formation in serum-free medium. Both mRNAs contained a conserved sequence segment of 135 nucleotides (termed tame sequence) in the 3' untranslated region that had 96% homology to the human and murine pro alpha 1 (I) collagen genes. The cDNA of this tame sequence was specifically recognized by nuclear protein(s) from L6 myoblasts, as judged by gel retardation assays and DNase I footprints. The tame-binding protein(s) was able to recognize its target sequence on double-stranded DNA but bound also to the appropriate single-stranded oligonucleotide. Protein that bound to the tame sequence was undetectable in nuclear extracts of L6 myotubes that did not accumulate the two collagen mRNAs. Therefore, the activity of this nuclear protein seems to be linked to accumulation of the sequences that it recognizes in vitro. The collagen RNAs and the nuclear tame-binding proteins reappeared after a change of medium, which further suggests that the RNAs and the protein(s) are coordinately regulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.