ShK toxin, a 35-residue peptide isolated from the Caribbean sea anemone Stichodactyla helianthus, is a potent inhibitor of the Kv1.3 potassium channel in lymphocytes. The natural toxin contains three disulfide bonds. The disulfide pairings of the synthetic ShK toxin were elucidated as a prerequisite for studies on its structure-function relationships. The toxin was fragmented at pH 6.5 using either thermolysin or a mixture of trypsin and chymotrypsin followed by thermolysin. The fragments were isolated by RP-HPLC and were identified by sequence analysis and MALDI-TOF mass spectrometry. The three disulfides were unambiguously identified in either proteolytic digest: Cys 3 to Cys 35, Cys ~2 to Cys 28 and Cys 17 to Cys 32. The CysLCys 35 disulfide, linking the aminoand carboxyl-termini, defines the characteristic cyclic structure of the molecule. A similar disulfide pairing motif is found in the snake venom-derived potassium channel blocker dendrotoxin and the mammalian antibiotic peptide defensins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.