Global nitrogen fixation contributes 413 Tg of reactive nitrogen (N r ) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic N r are on land (240 Tg N yr −1 ) within soils and vegetation where reduced N r contributes most of the input through the use of fertilizer nitrogen in agriculture. Leakages from the use of fertilizer N r contribute to nitrate (NO 3 − ) in drainage waters from agricultural land and emissions of trace N r compounds to the atmosphere. Emissions, mainly of ammonia (NH 3 ) from land together with combustion related emissions of nitrogen oxides (NO x ), contribute 100 Tg N yr −1 to the atmosphere, which are transported between countries and processed within the atmosphere, generating secondary pollutants, including ozone and other photochemical oxidants and aerosols, especially ammonium nitrate (NH 4 NO 3 ) and ammonium sulfate (NH 4 ) 2 SO 4 . Leaching and riverine transport of NO 3 contribute 40–70 Tg N yr −1 to coastal waters and the open ocean, which together with the 30 Tg input to oceans from atmospheric deposition combine with marine biological nitrogen fixation (140 Tg N yr −1 ) to double the ocean processing of N r . Some of the marine N r is buried in sediments, the remainder being denitrified back to the atmosphere as N 2 or N 2 O. The marine processing is of a similar magnitude to that in terrestrial soils and vegetation, but has a larger fraction of natural origin. The lifetime of N r in the atmosphere, with the exception of N 2 O, is only a few weeks, while in terrestrial ecosystems, with the exception of peatlands (where it can be 10 2 –10 3 years), the lifetime is a few decades. In the ocean, the lifetime of N r is less well known but seems to be longer than in terrestrial ecosystems and may represent an important long-term source of N 2 O that will respond very slowly to control measures on the sources of N r from which it is produced.
We demonstrate a power-scalable Kerr-lens mode-locked Yb:YAG thin-disk oscillator. It delivers 200 fs pulses at an average power of 17 W and a repetition rate of 40 MHz. At an increased (180 W) pump power level, the laser produces 270 fs 1.1 μJ pulses at an average power of 45 W (optical-to-optical efficiency of 25%). Semiconductor-saturable-absorber-mirror-assisted Kerr-lens mode locking (KLM) and pure KLM with a hard aperture show similar performance. To our knowledge, these are the shortest pulses achieved from a mode-locked Yb:YAG disk oscillator and this is the first demonstration of a Kerr-lens mode-locked thin-disk laser.
Continuous-wave room temperature operated 3.0 μ m type I GaSb-based lasers with quinternary AlInGaAsSb barriers Appl. Phys. Lett. 92, 091106 (2008); 10.1063/1.2890053 High-peak-power pulsed operation of 2.0 μ m (AlGaIn)(AsSb) quantum-well ridge waveguide diode lasers J. Appl. Phys. 99, 053105 (2006); 10.1063/1.2179121Extraordinarily wide optical gain spectrum in 2.2-2.5 μm In(Al)GaAsSb/GaSb quantum-well ridge-waveguide lasers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.