Hydrogen embrittlement behaviors of a high-Mn TWIP (twinning induced plasticity) steel with various grain sizes from coarse grains to ultra-fine grains were studied by hydrogen pre-charging and subsequent slow stain rate tensile tests. The results of the tensile tests showed that the yield strength and tensile strength were not influenced by hydrogen-charging, whereas the total elongation reduced with hydrogen-charging in coarse-grained specimen but no change in the ultrafine-grained specimen.Fracture surfaces showed dimple patterns in all specimens. The present results suggested that the grain refinement suppressed hydrogen embrittlement in the high-Mn TWIP steel, even though the diffusible hydrogen content increased by grain refinement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.