Using a completely kinetic description to analyze wave propagation in dusty plasmas, the case of propagation of waves exactly parallel to the external magnetic field and Maxwellian distributions for electrons and ions in the equilibrium is considered. A model for the charging process of dust particles which depends on the frequency of inelastic collisions between dust particles and electrons and ions is used. The dispersion relation and damping rates for Alfvén waves are obtained. For the numerical solutions, the average value of the inelastic collision frequency is used as an approximation. The results show that the presence of dust particles with variable charge in the plasma produces significant additional damping of the Alfvén wave. A novel process of mode coupling of low-frequency waves is demonstrated to occur due to the presence of dust particles.
We derive the dielectric tensor for multicomponent magnetized dusty plasmas, including the effect of capture of plasma electrons and ions by the dust particles. For propagation perpendicular to the external magnetic field and Maxwellian distributions of electrons and ions, we obtain compact expressions for the components of the dielectric tensor, which can be used to analyse wave propagation. An application to the magnetosonic wave is presented.
A kinetic description is used to analyze wave propagation in dusty plasmas, taking into account the fluctuation of the charge of the dust particles due to inelastic collisions with electrons and ions. The case of propagation of waves exactly parallel to the external magnetic field and Maxwellian distributions for the electrons and ions in the equilibrium is considered, and a parametric analysis of the dispersion relation is performed. The investigation emphasizes particularly the effects of dust density, radius of dust particles, ion temperature, ratio between electron and ion temperatures, ion density, and ambient magnetic field, on the solutions of the dispersion relation. The analysis shows the possibility of occurrence of coupling between waves in the whistler branch and waves in the branch of circularly polarized waves, in the presence of the dust particles.
Abstract. The dielectric tensor for a multicomponent magnetized dusty plasma, including the effect of capture of plasma electrons and ions by the dust particles, is rewritten in order to provide expressions more suitable for applications. We use this tensor to study the spatial absorption of a magnetosonic wave, including effects up to second order in the Larmor radius. We analyse the absorption of the wave due to the presence of dust particles with variable charge and the modification of this absorption due to finite-Larmorradius effects.
A kinetic formulation developed to analyze wave propagation in dusty plasmas, which takes into account the charge variation of the dust particles, is utilized to study the propagation and damping of Alfvén waves propagating in oblique directions relative to the ambient magnetic field. A dusty plasma containing spherical and immobile dust grains in a homogeneous ambient magnetic field is considered. The charging process of the dust grains is assumed to be associated with the capture of electrons and ions by the dust particles during inelastic collisions between them and plasma particles. The dispersion relation and the damping rates of obliquely propagating Alfvén waves are obtained assuming Maxwellian distributions for electrons and ions in equilibrium. For the numerical analysis of the dispersion relation we use the average values of the inelastic collision frequency as an approximation, instead of the momentum dependent expressions originally derived in the kinetic formulation, and study the modifications which the presence of the dust particles causes in both the propagation and the damping of the Alfvén waves. In particular is discussed the competition between the different damping mechanisms, namely, the Landau damping and the damping associated with the dust charge variation, and it is shown that the inelastic collision frequency plays a pivotal role in the magnitude of the damping rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.