Levels of the stabilized Criegee Intermediate (sCI), produced via the ozonolysis of unsaturated volatile organic compounds (VOCs), were estimated at two London urban sites (Marylebone Road and Eltham) and one rural site (Harwell) in the UK over the period of 1998–2012. The steady‐state approximation was applied to data obtained from the NETCEN (National Environmental Technology Centre) database, and the levels of annual average sCI were estimated to be in the range of 30–3000 molecules cm−3 for UK sites. A consistent diurnal cycle of sCI concentration is estimated for the UK sites with increasing levels during daylight hours, peaking just after midday. The seasonal pattern of sCI shows higher levels in spring with peaks around May due to the higher levels of O3. The ozone weekend effect resulted in higher sCI in UK urban areas during weekend. The sCI data were modeled using the information provided by the Air Quality Improvement Research Program (AQIRP) and found that the modeled production was five‐ to six‐fold higher than our estimated data, and therefore the estimated sCI concentrations in this study are thought to be lower estimates only. Compared with nighttime, 1.3‐ to 1.8‐fold higher sCI exists under daytime conditions. Using the levels of sCI estimated at Marylebone Road, globally the oxidation rates of NO2 + sCI (22.4 Gg/yr) and SO2 + sCI (37.6 Gg/yr) in urban areas can increase their effect in the troposphere and potentially further alter the oxidizing capacity of the troposphere. Further investigations of modeled sCI show that CH3CHOO (64%) and CH2OO (13%) are dominant among all contributing sCI at the UK sites.
The steady state approximation has been applied to the UK National Environment Technology Centre (NETCEN) data at three urban sites in the UK (Marylebone Road London, London Eltham, and Harwell) over the period of 1997 to 2012 to estimate the concentrations of daytime NO3. Despite the common assertion that NO3levels are negligible in the day as a consequence of photolysis, there are occasions where NO3reaches a few pptv. A seasonal pattern in NO3concentration was observed with higher levels in the spring with consistent peaks in April and May. A combination of temperature effects (the formation of NO3from the reaction of NO2with O3has a high activation energy barrier), a distinct pattern in O3concentration (peaking in spring), and loss via reaction with NO peaking in winter is responsible for this trend. Although reaction with OH is still the dominant loss process for VOCs during the day, there are VOCs (unsaturated) that will have an appreciable loss due to reaction with NO3in the daytime. Since the addition reaction of NO3with alkenes can lead directly to organic nitrate formation, there are implications for O3formation and secondary organic aerosol formation during daytime and these are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.