Ecological and evolutionary studies largely assume that island populations display low levels of neutral genetic variation. However, this notion has only been formally tested in a few cases involving plant taxa, and the confounding effect of selection on genetic diversity (GD) estimates based on putatively neutral markers has typically been overlooked. Here, we generated nuclear microsatellite and plastid DNA sequence data in Periploca laevigata, a plant taxon with an island-mainland distribution area, to (i) investigate whether selection affects GD estimates of populations across contrasting habitats; and (ii) test the long-standing idea that island populations have lower GD than their mainland counterparts. Plastid data showed that colonization of the Canary Islands promoted strong lineage divergence within P. laevigata, which was accompanied by selective sweeps at several nuclear microsatellite loci. Inclusion of loci affected by strong divergent selection produced a significant downward bias in the GD estimates of the mainland lineage, but such underestimates were substantial (>14%) only when more than one loci under selection were included in the computations. When loci affected by selection were removed, we did not find evidence that insular Periploca populations have less GD than their mainland counterparts. The analysis of data obtained from a comprehensive literature survey reinforced this result, as overall comparisons of GD estimates between island and mainland populations were not significant across plant taxa (N = 66), with the only exception of island endemics with narrow distributions. This study suggests that identification and removal of markers potentially affected by selection should be routinely implemented in estimates of GD, particularly if different lineages are compared. Furthermore, it provides compelling evidence that the expectation of low GD cannot be generalized to island plant populations.
The Rif mountains of northern Morocco represent a region of international significance from the standpoint of plant biodiversity with Abies maroccana amongst the endemic species; forest clearance, soil erosion, high rural population density and population growth are serious threats. Legal and illegal exploitation of the remaining natural forest for fuel, timber, forage and cork, produces some loss of forest but land clearance for extensions of the cultivated area, and other changes in the agricultural system such as the use of herbicides and fertilizers, and increased mechanization, are also resulting in loss of natural vegetation cover. Since 1989 cultivation of cannabis has increased in area from 25 000 ha to approximately 75 000 ha and this has greatly exacerbated the threat of degradation. A number of studies and initiatives are currently under way to address the challenges to the region and in particular the cannabis problem. It is suggested that an integrated approach using GIS methodology and carried out within the management framework of the Man and Biosphere Programme could provide a solution to the environmental threats facing the Rif mountains today.
The genus Dracaena in Macaronesia comprises two threatened species of arborescent monocots that are often associated with one of the most intriguing biogeographic disjunctions: the Rand Flora pattern. Molecular information is, however, largely missing for the Macaronesian Dracaena taxa ("MDT", hereafter), and the biogeographic or population genetic patterns of this lineage have not yet been thoroughly assessed. To fill this gap, we generated plastid DNA sequence data of 14 Dracaena populations representing the entire natural distribution of MDT (including mainland Morocco and all recognized subspecies), 9 additional populations of subspontaneous origin, and a set of related species of the genus. We performed phylogenetic, biogeographic, and population genetic analyses at different spatial scales and conducted a comparative review on plant haplotype diversity in Macaronesian plants. The results of our phylogenetic analyses indicated the monophyly of the MDT and an origin separate from a clade of geographically distant species that so far were postulated as their closest living relatives (D. cinnabari, D. ombet, D. schizantha, D. serrulata). The results of our phylogeographic analyses indicated that diversification within D. draco occurred throughout the Pleistocene and that wild peripheral populations (Madeira, mainland Morocco) may have a recent origin from Canarian source populations. Recent dispersals, coupled with remarkably low levels of haplotype diversity, probably account for the weak phylogeographic signal observed across wild populations. However, our results suggested that human-assisted expansion of Dracaena inflates the extant phylogeographic signal by non-random translocation of a specific subset of haplotypes. Our study demonstrates that many of the previous biogeographic scenarios on MDT are not supported by molecular data. Instead, our results highlight (i) the impact that human activity may have on the phylogeographic pattern of island plants, and (ii) the need of a deeper taxonomic sampling in future investigations on MDT and close relatives. Keywords biogeographic disjunction; Dracaena draco; haplotype diversity; human-mediated dispersal; island biogeography; Rand Flora Supporting Information may be found online in the Supporting Information section at the end of the article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.