Previous work has demonstrated the existence of systemic interaction between tenofovir (TFV) disoproxil fumarate (TDF) and didanosine as well as between TDF and lopinavir-ritonavir (LPV/r). Here we investigated TDF interactions with the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine (3TC) and abacavir (ABC), comparing both the concentrations of nucleoside/nucleotide reverse transcriptase inhibitors in plasma and the intracellular concentrations of their triphosphate metabolites (NRTI-TP) for human immunodeficiency virus-infected patients receiving these NRTIs with TDF and after 4 weeks of TDF interruption. We also looked at interactions between TDF-ABC and LPV/r, comparing patients receiving or not receiving LPV/r. Blood samples were taken at baseline and at 1, 2, and 4 h after dosing. Liquid chromatography-tandem mass spectrometry was used to measure NRTIs and NRTI-TPs. Statistical analyses were performed on pharmacokinetic parameters: the area under the concentration-time curve from 0 to 4 h (AUC 0-4 ), the maximum concentration of the drug (C max ), and the residual concentration of the drug at the end of the dosing interval (C trough ) for plasma and the AUC 0-4 and C trough for intracellular data. Among the groups of patient discontinuing TDF, the very long intracellular half-life of elimination (150 h) of TFV-DP (the diphosphorylated metabolite of TFV, corresponding to a triphosphorylated species) was confirmed. Comparison between groups as well as the longitudinal study showed no significant systemic or intracellular interaction between TDF and ABC or 3TC. Significant differences were observed between patients receiving LVP/r and those receiving nevirapine. For ABC, plasma exposure was decreased (40%) under LVP/r, while, in contrast, plasma exposure to TFV was increased by 50% and the intracellular TFV-DP AUC 0-4 was increased by 59%. A trend for a gender effect was observed for TFV-DP at the intracellular level, with higher and C trough values for women.Highly active antiretroviral therapy regimens include at least three antiretroviral agents combining a nucleoside/nucleotide reverse transcriptase inhibitor [N(t)RTI] backbone with a protease inhibitor (PI) or a nonnucleoside reverse transcriptase inhibitor (NNRTI) (51). The issue of drug-drug interaction between NRTIs, including N(t)RTIs, and also between N(t)RTIs and PIs or NNRTIs needs to be addressed (37).All these drugs or prodrugs could interact at the systemic level (absorption, metabolism, distribution, or elimination) or at the cellular level through membrane transport, or through intracellular metabolism for the N(t)RTIs.Several in vitro and in vivo intracellular interactions have been reported between NRTIs sharing the same metabolic pathways for thymidine analogues (14, 17) and for cytidine analogues (24).More recently, a significant interaction between didanosine (ddI) and tenofovir (TFV) disoproxil fumarate (TDF) has been clinically demonstrated (6,23,29,32), showing a higher plasma exposure to ddI when it is combined with TD...
Besides liquid chromatographic (LC)/UV methods adapted to therapeutic drug monitoring, there is still a need for more powerful techniques that can be used for pharmacological research and clinical purposes. We developed an LC method coupled with tandem mass spectrometry (MS/MS) to separate, detect and quantify with high sensitivity the nucleoside analogues used in multitherapies (zidovudine, stavudine, zalcitabine, didanosine, lamivudine and abacavir) in plasma and in the intracellular medium. We worked on two essential issues: (i) the need to use two ionization modes in order to achieve the best sensitivity, which leads to the optimization of the chromatographic separation of drugs detected in the positive ionization mode and drugs detected in the negative ionization mode, and (ii) the need to optimize the extraction step in order to enhance sample recovery. The peripheral blood mononuclear cells were lysed in Tris buffer-MeOH. A clean-up procedure was performed by solid-phase extraction only for plasma samples. The LC separation was carried out on a Zorbax Stable Bond C(18) column followed by MS/MS analysis after electrospray ionization in either the negative or positive mode. The positive ionization mode was applied at the beginning of the run to detect zalcitabine and lamivudine, then the ionization mode was changed to negative for the detection of didanosine, stavudine, internal standard and zidovudine. The calibration range for all the analytes was 0.5-200 ng ml(-1). The recoveries were between 64 and 90%, with coefficients of variation (CVs) lower than 15%. The inaccuracy (bias) was +/-15% with CVs always lower than 12%. The analytes were stable at room temperature and in the extraction solvent for at least 24 h, after storage at -80 degrees C for 3 months, after three freeze-thaw cycles and in the injection solvent after 48 h at 4 degrees C. Together with the measurement of intracellular triphosphorylated metabolites thanks to the powerful plasma and intracellular assay method for intact drugs, it is possible to describe the behaviour of nucleoside analogues against HIV through plasma pharmacokinetics, cell membrane diffusion including drug transport involvement, and also the intracellular metabolism.
Phenotyping based on drug metabolism activity appears to be informative regarding mechanism-based interactions during drug development. We report here the first steps of the development of the innovative CIME cocktail. This cocktail is designed not only for the major cytochrome P450, with caffeine, amodiaquine, tolbutamide, omeprazole, dextromethorphan and midazolam as substrates of CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A, respectively, but also phase II enzymes UGT 1A1/6/9 with acetaminophen, P-gp and OATP1B1 with digoxin and rosuvastatin, and renal function with memantine. An assay combining ultra-performance liquid chromatography using a 1.7 microm particle size column with tandem mass spectrometry (UPLC/MS/MS) was set up for the simultaneous quantification of the 20 substrates and metabolites after extraction from human plasma using solid-phase extraction. The method was validated in the spirit of the FDA guidelines. Mean accuracy ranged from 87.7 to 115%, the coefficient of variance (CV%) of intra- and inter-run from 1.7 to 16.4% and from 1.6 to 14.9%, respectively, and for the limit of quantification (LOQ) with ten lots of plasma, accuracy ranged from 84 to 115% and CV% precision was <16%. Short-term stability was evaluated in eluate (4 h, room temperature), plasma (24 h, room temperature), the autosampler (24 h, 4 degrees C) and in three freeze/thaw cycles in plasma. All except three analytes were stable under these conditions. For the three others a specific process can be followed. This robust, fast and sensitive assay in human plasma provides an analytical tool for ten-probe drugs of the CIME cocktail. Clinical samples will be assayed in the near future using this new assay method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.