This paper addresses the problem of energy consumption prediction using neural networks over a set of public buildings. Since energy consumption in the public sector comprises a substantial share of overall consumption, the prediction of such consumption represents a decisive issue in the achievement of energy savings. In our experiments, we use the data provided by an energy consumption monitoring system in a compound of faculties and research centers at the University of Granada, and provide a methodology to predict future energy consumption using nonlinear autoregressive (NAR) and the nonlinear autoregressive neural network with exogenous inputs (NARX), respectively. Results reveal that NAR and NARX neural networks are both suitable for performing energy consumption prediction, but also that exogenous data may help to improve the accuracy of predictions.
The use of Recurrent Neural Networks is not as extensive as Feedforward Neural Networks. Training algorithms for Recurrent Neural Networks, based on the error gradient, are very unstable in their search for a minimum and require much computational time when the number of neurons is high. The problems surrounding the application of these methods have driven us to develop new training tools. In this paper, we present a Real-Coded Genetic Algorithm that uses the appropriate operators for this encoding type to train Recurrent Neural Networks. We describe the algorithm and we also experimentally compare our Genetic Algorithm with the Real-Time Recurrent Learning algorithm to perform the fuzzy grammatical inference.
ABSTRACT:We provide a set of projects to put in practice artificial intelligence techniques using LEGO Mindstorms in an undergraduate computer degree, covering reactive and deliberative agents, rule-based systems, graph search algorithms, and planning methods. The projects have been applied for teaching in a third-year undergraduate subject of a computer engineering degree at the University of Granada (Spain). After the contextualization and development of the projects, we discuss the results, advantages, and drawbacks of our experience. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.