Although important structural events in protein folding are known to occur on the submillisecond time scale, the limited time resolution of conventional kinetic methods has precluded direct observation of the initial collapse of the polypeptide chain. A continuous-flow capillary mixing method recently developed by us made it possible to account for the entire fluorescence change associated with refolding of cytochrome c from approximately 5-10(-5)-10(2) s, including the previously unresolved quenching of Trp 59 fluorescence (burst phase) indicative of the formation of compact states. The kinetics of folding exhibits a major exponential process with a time constant of approximately 50 micros, independent of initial conditions and heme ligation state, indicating that a common free energy barrier is encountered during the initial collapse of the polypeptide chain. The resulting loosely packed intermediate accumulates prior to the rate-limiting formation of specific tertiary interactions, confirming previous indications that folding involves at least two distinct stages.
Two models are commonly used to describe the poorly understood earliest steps of protein folding. The framework model stresses very early formation of nascent secondary structures, which coalesce into a compact, molten, globule-like form from which tertiary structure slowly develops. The hydrophobic collapse model gives overriding precedence to a nonspecific collapse of the polypeptide chain which facilitates subsequent formation of specific secondary and tertiary structure. Here we report our analysis of the earliest observable events of the major folding pathway of barstar, a small protein. We compare the kinetics of folding using circular dichroism at 222 nm and 270 nm, intrinsic tryptophan fluorescence, fluorescence of the hydrophobic dye 8-anilino-1-naphthalene-sulphonic acid on binding, and restoration of tryptophan-dansyl fluorescence energy transfer as structure-monitoring probes. We show that the polypeptide chain rapidly collapses (within 4 ms) to a compact globule with a solvent-accessible hydrophobic core, but with no optically active secondary or tertiary structure. Thus the earliest event of the major folding pathway of barstar is a nonspecific hydrophobic collapse that does not involve concomitant secondary structure formation.
A continuous-flow capillary mixing apparatus, based on the original design of Regenfuss et al. (Regenfuss, P., R. M. Clegg, M. J. Fulwyler, F. J. Barrantes, and T. M. Jovin. 1985. Rev. Sci. Instrum. 56:283-290), has been developed with significant advances in mixer design, detection method and data analysis. To overcome the problems associated with the free-flowing jet used for observation in the original design (instability, optical artifacts due to scattering, poor definition of the geometry), the solution emerging from the capillary is injected directly into a flow-cell joined to the tip of the outer capillary via a ground-glass joint. The reaction kinetics are followed by measuring fluorescence versus distance downstream from the mixer, using an Hg(Xe) arc lamp for excitation and a digital camera with a UV-sensitized CCD detector for detection. Test reactions involving fluorescent dyes indicate that mixing is completed within 15 micros of its initiation and that the dead time of the measurement is 45 +/- 5 micros, which represents a >30-fold improvement in time resolution over conventional stopped-flow instruments. The high sensitivity and linearity of the CCD camera have been instrumental in obtaining artifact-free kinetic data over the time window from approximately 45 micros to a few milliseconds with signal-to-noise levels comparable to those of conventional methods. The scope of the method is discussed and illustrated with an example of a protein folding reaction.
The fluorescence-monitored kinetics of folding and unfolding of barstar by guanidine hydrochloride (GdnHC1) in the folding transition zone, at pH 7, 25 "C, have been quantitatively analyzed using a 3-state mechanism:Us + UF + N. Us and UF are slow-refolding and fast-refolding unfolded forms of barstar, and N is the native The IN + N reaction, which involves the same trans-cis isomerization process as the Us -+ UF reaction, occurs with a rate constant of 16 X IOp3 s-' and is independent of GdnHCl concentration. Thus, trans-cis isomerization occurs 3 times faster in the folding intermediate than in the unfolded state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.