Absolute rate constants have been measured for the reactions of cumylperoxy radicals with a number of hydrocarbons. The cumylperoxy radicals were produced from cumene hydroperoxide. Sufficient hydroperoxide was present to ensure that only cumylperoxy radicals were involved in the rate-determining propagation reaction.Primary and secondary deuterium isotope effects have been measured for propagation and termination in the oxidation of cumene. The rate of hydrogen atom abstraction from ring-substituted cumenes by cumylperoxy radicals can be correlated by the Hammett equation using o* substituent constants, p = -0.29. Primary and secondary peroxy radicals are about 3-5 times more reactive in hydrogen abstraction than tertiary peroxy radicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.