Colonization of the ceca and contamination on carcasses of chickens by Campylobacter spp. was investigated. Samples were taken on the farm and after transport and holding. In the first set of experiments, 20 chickens, obtained from each of 10 broiler farms, were collected from houses containing 6- to 7-wk-old birds. Half of the birds were slaughtered at the farm; the other half were transported (10 birds per chicken coop) to a holding facility and killed within 16 to 18 h. The levels of Campylobacter spp. on the carcass and in the ceca were assessed. Ceca from birds in 9 of the 10 farms sampled were positive for Campylobacter spp. Colonization levels ranged from 10(4.11) to 10(7.28) cfu Campylobacter spp./g cecal matter, except on one farm, where the organism was not isolated. The mean count on the farm was 10(5.44) cfu Campylobacter spp./g cecal material, and after transport the mean was 10(6.15) cfu/g. Significant increases (P = .0085) in levels of Campylobacter spp. on the chicken carcasses occurred after transport. Levels of Campylobacter spp. enumerated from unprocessed chicken carcasses after transport averaged 10(7.11) per carcass, up from an average of 10(3.66) cfu per carcass of the farm. To further verify this observation, field trials were conducted to assess levels on carcasses before and after commercial transport. Employing five farms and 200 6-wk-old chickens, the above observations were confirmed: prior to transport 12.1% of the chickens harbored an average of 10(2.71) cfu per carcass, but after transport 56.0% of the chicken exteriors harbored an average of 10(5.15) cfu per carcass. The results of this study indicate that transport and holding prior to processing contributes to the Campylobacter spp. of > 10(4) cfu normally found on processed poultry carcasses.
Twenty north Georgia commercial flocks of broiler chickens sampled in 1995 and 11 flocks sampled in 2001 were tested for Campylobacter spp. Direct plating on Campy-Cefex agar was carried out to determine levels of Campylobacter colonization within each flock through the enumeration of the organism in 50 fresh fecal samples 1 day prior to slaughter. The next morning, these flocks were the first to be processed, and levels of the organism per carcass before the chilling operation (50 carcasses per flock) in 2001 and after the chilling operation (50 carcasses per flock) in both 1995 and 2001 were estimated. Levels of the organism on freshly processed broiler carcasses were estimated by the same methods in 1995 and 2001, and a significant reduction from an average of 10(4.11) CFU per carcass in 1995 to an average of 10(3.05) CFU per carcass in 2001 was observed. Levels of Campylobacter spp. found in production and in processing were not strongly correlative, indicating the existence of complex parameters involving production factors and variables associated with flock transport and the processing of the broilers. The reduction in Campylobacter levels on processed carcasses may have contributed to the reduction in the frequency of human disease observed by the Centers for Disease Control during the same period. These data characterize the distribution of Campylobacter in north Georgia poultry operations and should assist in the development of risk assessment models for Campylobacter spp. The results obtained in this study suggest that the implementation of antimicrobial interventions by the poultry industry has already reduced consumer exposure to the organism.
Historically, nitrite has been a component of meat-curing additives for several centuries. In recent years the safety of nitrite as an additive in cured meats has been questioned mainly because of the possible formation of carcinogenic nitrosamines. Nitrite has many important functions in meat curing including its role in color development, flavor, antioxidant properties, and antimicrobial activity. The inhibition of Clostridium botulinum growth and toxin production is an especially important antimicrobial property of nitrite. This review discusses the effects of processing, curing ingredients (especially nitrite), and storage of cured meats in relation to the control of C. botulinum. If nitrite is eliminated from cured meats or the level of usage decreased, then alternatives for the antibotulinal function of nitrite need to be considered. Several potential alternatives including sorbates, parabens, and biological acidulants are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.