The Dimensional Regularization (DR) of Bollini and Giambiagi (BG) can not be defined for all Schwartz Tempered Distributions Explicitly Lorentz Invariant (STDELI) L ¢ . In this paper we overcome such limitation and show that it can be generalized to all aforementioned STDELI and obtain a product in a ring with zero divisors. For this purpose, we resort to a formula obtained by Bollini and Rocca and demonstrate the existence of the convolution (in Minkowskian space) of such distributions. This is done by following a procedure similar to that used so as to define a general convolution between the Ultradistributions of J Sebastiao e Silva (JSS), also known as Ultrahyperfunctions, obtained by Bollini et al. Using the Inverse Fourier Transform we get the ring with zero divisors LA ¢ , defined asdenotes the Inverse Fourier Transform. In this manner we effect a dimensional regularization in momentum space (the ring L ¢ ) via convolution, and a product of distributions in the corresponding configuration space (the ring LA ¢ ). This generalizes the results obtained by BG for Euclidean space. We provide several examples of the application of our new results in Quantum Field Theory (QFT). In particular, the convolution of n massless Feynman's propagators and the convolution of n massless Wheeler's propagators in Minkowskian space. The results obtained in this work have already allowed us to calculate the classical partition function of Newtonian gravity, for the first time ever, in the Gibbs' formulation and in the Tsallis' one. It is our hope that this convolution will allow one to quantize non-renormalizable Quantum Field Theories (QFT's).
We consistently quantize a class of relativistic non-local field equations characterized by a non-local kinetic term in the lagrangian. We solve the classical non-local equations of motion for a scalar field and evaluate the on-shell hamiltonian. The quantization is realized by imposing Heisenberg's equation which leads to the commutator algebra obeyed by the Fourier components of the field. We show that the field operator carries, in general, a reducible representation of the Poincare group.We also consider the Gupta-Bleuler quantization of a non-local gauge field and analyze the propagators and the physical states of the theory.
In this work, a general definition of convolution between two arbitrary four dimensional Lorentz invariant (fdLi) Tempered Ultradistributions is given, in both: Minkowskian and Euclidean Space (Spherically symmetric tempered ultradistributions).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.