Livestock have presented unique requirements and toxicity issues depending on the species for the various concentrations of Cu and Zn and their interactions with other nutrients especially Fe, Se, Mo, and S. Soil concentrations of these elements and their availability to crops influence the health of the crop and the amount found in vegetative tissues and seeds. Hence, many livestock issues are a result of the soils in the area where production is occurring (Loneragan et al. 1981 ). While water can provide minerals to animals, the amount consumed and availability are highly variable. Many discoveries about Cu were a result of low Cu concentrations and its availability due to interactions with other nutrients in the soils. Anemia, bone disorders, cardiovascular abnormalities, defective wool and hair, and infertility are signs/symptoms of Cu deficiency. Toxicity due to excess Cu is more likely to occur in sheep than other farm species. Swine are tolerant of high concentrations of dietary Cu, and it is often used as a growth stimulant in production. There are many species and physiological stages where the animal’s Cu requirement is not known. Grazing animals can exhibit Zn deficiency when soils and forages contain limited concentrations of Zn. Pastures have been observed to be Zn-deficient in many parts of the world. However, non-ruminant animals usually receive adequate Zn when fed corn and soybean meal diets if there is not excessive Ca and Fe in their diets, but this is not true for rapidly growing young animals. Characteristics of a Zn deficiency include loss of appetite, reduced growth and reproduction, and impaired health of bone and skin tissues.
An experiment involving 560 crossbred pigs (28 replications of 4 to 6 pigs per pen) was conducted at 9 research stations to assess the effects of dietary concentrations of corn distillers dried grains with solubles (DDGS) on pig performance and belly firmness. Fortified corn-soybean meal diets containing 0, 15, 30, or 45% DDGS were fed in 3 phases from 33 to 121 kg of BW. A common source of DDGS containing 90.1% DM, 26.3% CP, 0.96% Lys, 0.18% Trp, 9.4% crude fat, 34.6% NDF, 0.03% Ca, and 0.86% P was used at each station. Diets were formulated to contain 0.83, 0.70, and 0.58% standardized ileal digestible (SID) Lys during the 3 phases with diets changed at 60 and 91 kg of BW, respectively. The DDGS replaced corn and soybean meal, and up to 0.172% Lys and 0.041% Trp were added to maintain constant SID concentrations of Lys and Trp in each phase. At each station, 2 pigs from each pen in 2 replications were killed and a midline backfat core was obtained for fatty acid analysis and iodine value. In most instances, there were differences among stations (P < 0.01), but the station × treatment interactions were few. Body weight gain was linearly reduced in pigs fed the greater amounts of DDGS (0 to 45%) during phase I (950, 964, 921, and 920 g/d; P < 0.01) and over the entire experimental period (944, 953, 924, and 915 g/d; P = 0.03), but ADFI (2.73, 2.76, 2.68, and 2.70 kg) and G:F (347, 347, 345, and 341 g/kg) were not affected (P = 0.15 and P = 0.33, respectively) during the entire test. Backfat depth was reduced (linear, P < 0.02) by increasing amounts of DDGS (22.5, 22.7, 21.4, and 21.6 mm), but LM area (47.4, 47.4, 46.1, and 45.4 cm(2)) was not affected (P = 0.16) by treatments. Estimated carcass fat-free lean was 51.9, 52.2, 52.4, and 52.1% for 0 to 45% DDGS, respectively (linear, P = 0.06). Flex measures obtained at 6 stations indicated less firm bellies as dietary DDGS increased (lateral flex: 11.9, 8.6, 8.4, and 6.6 cm; linear, P < 0.001; vertical flex: 26.1, 27.4, 28.2, and 28.7 cm; linear, P < 0.003). Saturated and monounsaturated fatty acid concentrations in subcutaneous fat decreased linearly (P < 0.001) and PUFA concentrations increased linearly (P < 0.001) with increasing DDGS in the diet. Iodine values in inner (61.1, 68.2, 74.7, and 82.2) and outer (67.9, 73.6, 79.6, and 85.8) backfat increased linearly (P < 0.001) as DDGS in the diet increased. In this study, feeding diets with 30 or 45% DDGS did not have major effects on growth performance, but resulted in softer bellies. Regression analysis indicated that iodine values increased 4.3 units for every 10 percentage unit inclusion of DDGS in the diet.
Growth performance and feed efficiency are essential parameters when evaluating profitability of livestock. However, animal performance does not always reflect optimal gut health. Decades of research have supported the theory that improved animal performance such as average daily gain and feed efficiency can be impacted by intestinal health or the ability of the intestinal mucosa to absorb nutrients, but dysfunction may be found when the animal is stressed. Most of the early research focused on enteric infections causing diarrhea and nutritional alternatives to antibiotics which has led to findings related to pharmacological supplementation of trace minerals above the nutrient requirements for non-ruminants. While pharmacological concentrations of copper (Cu) have been shown to enhance growth, the mechanism in the gut is elusive. High concentrations of zinc (Zn) fed to newly weaned nursery pigs reduced the incidence of diarrhea from the proliferation of enterotoxigenic Escherichia coli (E. coli) and Clostridium and improve gut morphology. There are numerous publications where pharmacological supplementation of Zn as zinc oxide (ZnO) were fed to newly weaned pigs. Pharmacological Zn has been reported to shape the intestinal microflora as well as the diversity of the microflora during the first 2 weeks post-weaning. Both Fe deficiency and fortification impact bacterial growth in the intestine. Therefore, this paper will focus on the role of trace minerals that potentially impact optimal gut health of young monogastric animals.
Current floor space allowances were determined in research studies conducted 10 to 20 yr ago using pigs that were marketed at a BW of about 113 kg or less. Currently, pork producers are regularly marketing pigs that weigh over 128 kg. Given this precipitous increase in market weight, we conducted 2 experiments to determine if floor space allowances previously determined apply to pigs marketed at greater than 128 kg. Experiment 1 was conducted at 5 university research stations throughout the Upper Midwest region. In this experiment, we evaluated the growth performance, salivary cortisol concentrations, and lesion scores of pigs weighing between 27 and 138 kg provided 0.71, 0.80, 0.89, 0.98, or 1.07 m/pig of floor space. Within each station, group size (range = 6 to 19 pigs) remained constant across floor space treatments but pen size was altered to achieve the desired space allocations. There were 14 replicate pens for each treatment. Overall, increasing floor space allowance increased final BW (linear, = 0.04) and tended (linear, < 0.06) to increase ADG and ADFI. There were no improvements in final BW or ADG beyond 0.89 m/pig. The G:F was not influenced by increasing floor space allocation. Salivary cortisol concentrations and lesion scores were not affected by floor space allowances. Experiment 2 focused on floor space needs of pigs nearing market weight and was conducted at 4 research stations. Pigs weighing about 130 kg were assigned to pens that provided 0.71, 0.80, 0.89, 0.98, or 1.07 m/pig of floor space. Group size ranged from 4 to 11 pigs per pen but was constant across floor space treatments within station. The study lasted 2 wk and there were 8 replicate pens per treatment. As floor space allowance increased, ADG (0.86, 0.95, 0.95, 1.10, and 1.06 kg; linear, < 0.01), ADFI (3.03, 3.26, 3.22, 3.49, and 3.25 kg; quadratic, < 0.05), and final BW (145.6, 145.7, 146.4, 148.3, and 147.9 kg; linear, < 0.01) increased. Based on the results of these 2 experiments, pigs marketed at about 138 kg require at least 0.89 m/pig to support optimal growth performance. However, heavier pigs (about 148 kg) at the end of the finishing period require 0.98 m/pig.
A cooperative study comprising growth performance, bone mineralization, and nutrient balance experiments was conducted at 11 stations to determine the standardized total-tract digestible (STTD) P requirement of 20-kg pigs using broken-line regression analysis. Monocalcium phosphate and limestone were added to a corn-soybean meal-based diet at the expense of cornstarch to establish 6 concentrations of STTD P from 1.54 to 5.15 g/kg in increments of 0.62 g/kg at a constant Ca:total P of 1.52:1.0. Diets were fed to 936 pigs (average initial BW of 19 kg) in 240 pens for 20 replicate pens of barrows and 20 replicate pens of gilts per diet. As STTD P increased from 1.54 to 5.15 g/kg of the diet for d 0 to 14, 14 to 28, and 0 to 28, the ADG, ADFI, and G:F increased ( < 0.01). Barrows gained and ate more ( < 0.05) than gilts during d 14 to 28 and 0 to 28. There was no interaction between sex and STTD P concentration for any of the growth performance response criteria. There were both linear and quadratic increases ( < 0.05) in mineral density and content of ash, Ca, and P in the femur expressed as a percentage of dry, fat-free metacarpal as dietary STTD P increased. Furthermore, the maximum load of the femur and mineral density and content and maximum load as well as the Ca and P expressed as a percentage of metacarpal ash linearly increased ( < 0.01) with increasing dietary concentrations of STTD P. There were both linear and quadratic increases ( < 0.01) in apparent digestibility and retention of P with increasing concentrations of STTD P in the diets. Digestibility and retention of Ca linearly ( < 0.01) increased with increasing dietary concentrations of STTD P. Breakpoints determined from nonlinear broken-line regression analyses revealed estimates of 4.20 ± 0.102, 3.20 ± 0.036, or 3.87 ± 0.090 g/kg for ADG during d 0 to 14, 14 to 28, or 0 to 28, respectively. Corresponding estimates using G:F as the response criterion were 4.34 ± 0.146, 3.38 ± 0.139, or 4.08 ± 0.195 g/kg. When mineralization of the femur was used as criteria of response, estimates of STTD P requirement were 4.28, 4.28, or 4.34, g/kg for mineral density, mineral content, or maximum load, respectively. Using mineralization of the metacarpal as criteria of response, estimates of STTD P requirement ranged from 3.5 to 5.0 g/kg depending on the metacarpal response criteria. The study provided empirical estimates of STTD P requirements of 20- to 40-kg pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.