Dermatologic radiotherapy showed to be a safe, effective and non-invasive method, superior, on the basis of the literature data, to any other available therapeutic modality in the management of basal and squamous cell skin carcinomas localized over the nasal cartilages.
There is now evidence that bone marrow (BM) can generate cells expressing neuronal antigens in adult mouse brain. In the present study, we examined the spinal cord and dorsal root ganglia (DRG) of adult mice 3 months after BM cell transplantation from transgenic donor mice expressing the enhanced green fluorescent protein (GFP). To determine whether GFP(+) cells acquire neuroectodermal phenotypes, we tested, by immunocytochemistry followed by confocal analysis, the coexpression of the astrocytic marker glial fibrillary acidic protein (GFAP) and the neuronal markers NeuN, neurofilament (NF), and class III beta-tubulin (TuJ1). Rare GFP(+) cells coexpressing TuJ1, NF, and NeuN were found both in spinal cord and in sensory ganglia. These cells have small dimensions and short cytoplasmic processes, probably reflecting an immature phenotype. Double GFP and GFAP positivity was found only in spinal cord. To determine whether cell fusion with endogenous cells occurred, we investigated the nuclear content of cells coexpressing GFP and neuronal or astrocytic markers, demonstrating that these cells have only one nucleus and a DNA ploidy that it is not different from that of surrounding neurons and astrocytes. Large numbers of GFP(+) cells are also positively stained for F4/80, a microglial-recognizing antibody, and present a characteristic microglial-like morphology both in spinal cord and, with a higher frequency, in sensory ganglia. These data support a potential role for BM-derived stem cells in spinal cord neuroneogenesis. They also confirm that the microglial compartment within the CNS and in DRG undergoes a relatively fast turnover, with the contribution of hematopoietic stem cells. Both these findings might prove useful for the development of treatments for spinal cord neurodegenerative and acquired disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.