Organic semiconductors that are pi-conjugated are emerging as an important platform for 'spintronics', which purports to harness the spin degree of freedom of a charge carrier to store, process and/or communicate information. Here, we report the study of an organic nanowire spin valve device, 50 nm in diameter, consisting of a trilayer of ferromagnetic cobalt, an organic, Alq3, and ferromagnetic nickel. The measured spin relaxation time in the organic is found to be exceptionally long-between a few milliseconds and a second-and it is relatively temperature independent up to 100 K. Our experimental observations strongly suggest that the primary spin relaxation mechanism in the organic is the Elliott-Yafet mode, in which the spin relaxes whenever a carrier scatters and its velocity changes.
The controlled creation, manipulation and detection of spin-polarized currents by purely electrical means remains a central challenge of spintronics. Efforts to meet this challenge by exploiting the coupling of the electron orbital motion to its spin, in particular Rashba spin-orbit coupling, have so far been unsuccessful. Recently, it has been shown theoretically that the confining potential of a small current-carrying wire with high intrinsic spin-orbit coupling leads to the accumulation of opposite spins at opposite edges of the wire, though not to a spin-polarized current. Here, we present experimental evidence that a quantum point contact -- a short wire -- made from a semiconductor with high intrinsic spin-orbit coupling can generate a completely spin-polarized current when its lateral confinement is made highly asymmetric. By avoiding the use of ferromagnetic contacts or external magnetic fields, such quantum point contacts may make feasible the development of a variety of semiconductor spintronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.