This paper deals with the characterization of the static mechanical behaviour of an energetic material. Due to the constituents (crystals and a polymeric binder), the behaviour is influenced by the pressure, the temperature and the strain rate. The temperature, considered varying slowly, is a parameter and the computational problems are uncoupled. Therefore, a complete experimental protocol and a model have been developed. Inspired from the Visco-Scram model, the behaviour is described using a general Maxwell model in which all the branches are affected by an isotropic damage. The first branch takes into account elastic-plastic behaviour. The yield stress is given by a parabolic criterion, characterized using compressive, tensile and tri-axial tests. The hardening is isotropic and the plastic flow rule is nonassociated. The other branches are viscoelastic. A genetic algorithm is used to optimise the viscoelastic parameters, previously obtained using DMA measurements. Comparisons between the model and experiments are proposed for different temperatures, strain rates and pressures. At last, a user material subroutine has been developed in Abaqus Standard and finite element computations of the Brazilian test are compared to the experimental response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.