Skeletal muscle is under inhibitory homeostatic regulation by multiple ligands of the transforming growth factor-β (TGFβ) superfamily. Follistatin is a secreted protein that promotes muscle growth and function by sequestering these ligands extracellularly. In the present study, we evaluated the potential of ACE-083 – a locally acting, follistatin-based fusion protein – as a novel therapeutic agent for focal or asymmetric myopathies. Characterization of ACE-083
in vitro
revealed its high affinity for heparin and extracellular matrix while surface plasmon resonance and cell-based assays confirmed that ACE-083 binds and potently neutralizes myostatin, activin A, activin B and growth differentiation factor 11 (GDF11). Intramuscular administration of ACE-083 caused localized, dose-dependent hypertrophy of the injected muscle in wild-type mice and mouse models of Charcot-Marie-Tooth disease (CMT) and Duchenne muscular dystrophy, with no evidence of systemic muscle effects or endocrine perturbation. Importantly, ACE-083 also increased the force of isometric contraction
in situ
by the injected tibialis anterior muscle in wild-type mice and disease models and increased ankle dorsiflexion torque in CMT mice. Our results demonstrate the potential of ACE-083 as a therapeutic agent for patients with CMT, muscular dystrophy and other disorders with focal or asymmetric muscle atrophy or weakness.
Patients with neuromuscular disorders suffer from a lack of treatment options for skeletal muscle weakness and disease comorbidities. Here, we introduce as a potential therapeutic agent a heterodimeric ligand-trapping fusion protein, ActRIIB:ALK4-Fc, which comprises extracellular domains of activin-like kinase 4 (ALK4) and activin receptor type IIB (ActRIIB), a naturally occurring pair of type I and II receptors belonging to the TGF-β superfamily. By surface plasmon resonance (SPR), ActRIIB:ALK4-Fc exhibited a ligand binding profile distinctly different from that of its homodimeric variant ActRIIB-Fc, sequestering ActRIIB ligands known to inhibit muscle growth but not trapping the vascular regulatory ligand bone morphogenetic protein 9 (BMP9). ActRIIB:ALK4-Fc and ActRIIB-Fc administered to mice exerted differential effectsconcordant with SPR results -on vessel outgrowth in a retinal explant assay. ActRIIB:ALK4-Fc induced a systemic increase in muscle mass and function in wild-type mice and in murine models of Duchenne muscular dystrophy (DMD), amyotrophic lateral sclerosis (ALS), and disuse atrophy. Importantly, ActRIIB:ALK4-Fc improved neuromuscular junction abnormalities in murine models of DMD and presymptomatic ALS and alleviated acute muscle fibrosis in a DMD model. Furthermore, in combination therapy ActRIIB:ALK4-Fc increased the efficacy of antisense oligonucleotide M12-PMO on dystrophin expression and skeletal muscle endurance in an aged DMD model. ActRIIB:ALK4-Fc shows promise as a therapeutic agent, alone or in combination with dystrophin rescue therapy, to alleviate muscle weakness and comorbidities of neuromuscular disorders.
Follistatin is an endogenous glycoprotein that promotes growth and repair of skeletal muscle by sequestering inhibitory ligands of the transforming growth factor-b superfamily and may therefore have therapeutic potential for neuromuscular diseases. Here, we sought to determine the suitability of a newly engineered follistatin fusion protein (FST288-Fc) to promote localized, rather than systemic, growth of skeletal muscle by capitalizing on the intrinsic heparin-binding ability of the follistatin-288 isoform. As determined by surface plasmon resonance and cell-based assays, FST288-Fc binds to activin A, activin B, myostatin (growth differentiation factor GDF8), and GDF11 with high affinity and neutralizes their activity in vitro. Intramuscular administration of FST288-Fc in mice induced robust, dose-dependent growth of the targeted muscle but not of surrounding or contralateral muscles, in contrast to the systemic effects of a locally administered fusion protein incorporating activin receptor type IIB (ActRIIB-Fc). Furthermore, systemic administration of FST288-Fc in mice did not alter muscle mass or body composition as determined by NMR, which again contrasts with the pronounced systemic activity of ActRIIB-Fc when administered by the same route. Subsequent analysis revealed that FST288-Fc in the circulation undergoes rapid proteolysis, thereby restricting its activity to individual muscles targeted by intramuscular administration. These results indicate that FST288-Fc can produce localized growth of skeletal muscle in a targeted manner with reduced potential for undesirable systemic effects. Thus, FST288-Fc and similar agents may be beneficial in the treatment of disorders with muscle atrophy that is focal, asymmetric, or otherwise heterogeneous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.