Understanding the adsorption mechanisms of large molecules on metal surfaces is a demanding task. Theoretical predictions are difficult because of the large number of atoms that have to be considered in the calculations, and experiments aiming to solve the molecule-substrate interaction geometry are almost impossible with standard laboratory techniques. Here, we show that the adsorption of complex organic molecules can induce perfectly ordered nanostructuring of metal surfaces. We use surface X-ray diffraction to investigate in detail the bonding geometry of C(60) with the Pt(111) surface, and to elucidate the interaction mechanism leading to the restructuring of the Pt(111) surface. The chemical interaction between one monolayer of C(60) molecules and the clean Pt(111) surface results in the formation of an ordered sqrt[13] x sqrt[13]R13.9 degrees reconstruction based on the creation of a surface vacancy lattice. The C(60) molecules are located on top of the vacancies, and 12 covalent bonds are formed between the carbon atoms and the 6 platinum surface atoms around the vacancies. In-plane displacements induced on the platinum substrate are of the order of a few picometres in the top layer, and are undetectable in the deeper layers.
Fullerene molecules absorbed on the highly anisotropic Au(110)-p(1x2) surface induce an ordered p(6x5) superstructure that has been solved by applying the 2D "direct methods" difference sum function to the surface x-ray diffraction data set. We found that the C (60)-gold interface is structurally much more complex than the one previously suggested by scanning tunneling microscopy data [J. K. Gimzewski, S. Modesti, and R. R. Schlittler, Phys. Rev. Lett. 72, 1036 (1994)]. Indeed a large fraction of Au surface atoms are displaced from their original positions producing microscopic pits that may accommodate the fullerene molecules.
We discuss the scheme and test performances of this recently commissioned system in its final configuration. The tests show that the improvements in the electron optics system with respect to other instruments in the same class made it possible to reach lateral resolutions in the 50 nm range. They also demonstrate rather good spectromicroscopy and spectroscopy performances, reliability and flexibility of operation.
The recently described tests of the synchrotron imaging photoelectron spectromicroscope MEPHISTO ͑Microscope à Emission de PHotoélectrons par Illumination Synchrotronique de Type Onduleur͒ were complemented by further resolution improvements and tests, which brought the lateral resolution down to 20 nm. Images and line plot profiles demonstrate such performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.