Results of an ongoing collaboration between the engine manufacturer MTU and the German aerospace research center DLR on the NOx reduction potential of conventional combustors are reported. A program comprising optical sector combustor measurements at 1, 6, and 15 bars and CFD calculations is carried out. The aims are to gather information in the combustor at realistic operating conditions, to understand the differences between the sector flow field and data from tubular combustors, to verify the used CFD, and to discover the benefits and limitations of the applied optical diagnostics. Selected results of measurements and calculations of the isothermal flow and of measurements at 6 bars and 700 K at a rich-lean and overall lean AFR are reported. The used measurement techniques were LDA, PDA, Mie scattering on kerosene, quantitative light scattering, OH* chemiluminescence, and LIF on OH. The measurements were able to confirm the intended quick and homogeneous mixing of the three staggered rows of secondary air jets.
Results of an ongoing collaboration between the engine manufacturer MTU and the German aerospace research center DLR on the NOx reduction potential of conventional combustors are reported. A program comprising optical sector combustor measurements at 1, 6 and 15 bars and CFD calculations is carried out. The aims are to gather information in the combustor at realistic operating conditions, to understand the differences between the sector flow field and data from tubular combustors, to verify the used CFD and to discover the benefits and limitations of the applied optical diagnostics. Selected results of measurement and calculation of the isothermal flow and of measurements at 6 bars and 700 K at a rich-lean and overall lean AFR are reported. The used measurement techniques were LDA, PDA, Mie scattering on kerosene, Quantitative Light Scattering, OH* Chemiluminescence and LIF on OH. The measurements were able to confirm the intended quick and homogeneous mixing of the three staggered rows of secondary air jets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.