The competition between collective quantum phases in materials with strongly correlated electrons depends sensitively on the dimensionality of the electron system, which is difficult to control by standard solid-state chemistry. We have fabricated superlattices of the paramagnetic metal lanthanum nickelate (LaNiO(3)) and the wide-gap insulator lanthanum aluminate (LaAlO(3)) with atomically precise layer sequences. We used optical ellipsometry and low-energy muon spin rotation to show that superlattices with LaNiO(3) as thin as two unit cells undergo a sequence of collective metal-insulator and antiferromagnetic transitions as a function of decreasing temperature, whereas samples with thicker LaNiO(3) layers remain metallic and paramagnetic at all temperatures. Metal-oxide superlattices thus allow control of the dimensionality and collective phase behavior of correlated-electron systems.
We measured the transverse and longitudinal coherence properties of the Linac Coherent Light Source (LCLS) at SLAC in the hard x-ray regime at 9 keV photon energy on a single shot basis. Speckle patterns recorded in the forward direction from colloidal nanoparticles yielded the transverse coherence properties of the focused LCLS beam. Speckle patterns from a gold nanopowder recorded with atomic resolution allowed us to measure the shot-to-shot variations of the spectral properties of the x-ray beam. The focused beam is in the transverse direction fully coherent with a mode number close to 1. The average number of longitudinal modes behind the Si(111) monochromator is about 14.5 and the average coherence time τ(c)=(2.0±1.0) fc. The data suggest a mean x-ray pulse duration of (29±14) fs behind the monochromator for (100±14) fc electron pulses.
The fast ignitor scheme for inertial confinement fusion requires forward driving of the critical density surface by light pressure (hole boring) to allow energy deposition close to the dense fuel. The recession velocity of the critical density surface has been observed to be v/c=0.015 at an irradiance of 1.0×1019 W cm−2 at a wavelength of 1.05 micron, in quantitative agreement with modeling.
Abstract:The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse mode M s = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Finally the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.
References and links1. M. Hogan, C. Peelegrini, J. Rosenzweig, S. Frigola, A. Tremaine, C. Fortgang, D. Nguyen, R. Sheffield, J. Kinross-Wright, A. Varfolomeev, A. Varfolomeev, S. Tolmachev, and R. Carr, "Measurement of gain larger than 10 5 at 12µm in a self-amplified spontaneous-emission free-electron laser," Phys. Rev. Lett. 81, 4867-4870 (1998
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.