Purpose In the randomized, open-label, phase III KEYNOTE-024 study, pembrolizumab significantly improved progression-free survival and overall survival (OS) compared with platinum-based chemotherapy in patients with previously untreated advanced non–small-cell lung cancer (NSCLC) with a programmed death ligand 1 tumor proportion score of 50% or greater and without EGFR/ALK aberrations. We report an updated OS and tolerability analysis, including analyses adjusting for potential bias introduced by crossover from chemotherapy to pembrolizumab. Patients and Methods Patients were randomly assigned to pembrolizumab 200 mg every 3 weeks (for up to 2 years) or investigator’s choice of platinum-based chemotherapy (four to six cycles). Patients assigned to chemotherapy could cross over to pembrolizumab upon meeting eligibility criteria. The primary end point was progression-free survival; OS was an important key secondary end point. Crossover adjustment analysis was done using the following three methods: simplified two-stage method, rank-preserving structural failure time, and inverse probability of censoring weighting. Results Three hundred five patients were randomly assigned (pembrolizumab, n = 154; chemotherapy, n = 151). At data cutoff (July 10, 2017; median follow-up, 25.2 months), 73 patients in the pembrolizumab arm and 96 in the chemotherapy arm had died. Median OS was 30.0 months (95% CI, 18.3 months to not reached) with pembrolizumab and 14.2 months (95% CI, 9.8 to 19.0 months) with chemotherapy (hazard ratio, 0.63; 95% CI, 0.47 to 0.86). Eighty-two patients assigned to chemotherapy crossed over on study to receive pembrolizumab. When adjusted for crossover using the two-stage method, the hazard ratio for OS for pembrolizumab versus chemotherapy was 0.49 (95% CI, 0.34 to 0.69); results using rank-preserving structural failure time and inverse probability of censoring weighting were similar. Treatment-related grade 3 to 5 adverse events were less frequent with pembrolizumab compared with chemotherapy (31.2% v 53.3%, respectively). Conclusion With prolonged follow-up, first-line pembrolizumab monotherapy continues to demonstrate an OS benefit over chemotherapy in patients with previously untreated, advanced NSCLC without EGFR/ALK aberrations, despite crossover from the control arm to pembrolizumab as subsequent therapy.
There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.http://eprints.gla.ac.uk/118215/
PURPOSE In KEYNOTE-189, first-line pembrolizumab plus pemetrexed-platinum significantly improved overall survival (OS) and progression-free survival (PFS) compared with placebo plus pemetrexed-platinum in patients with metastatic nonsquamous non‒small-cell lung cancer (NSCLC), irrespective of tumor programmed death-ligand 1 (PD-L1) expression. We report an updated analysis from KEYNOTE-189 (ClinicalTrials.gov: NCT02578680 ). METHODS Patients were randomly assigned (2:1) to receive pemetrexed and platinum plus pembrolizumab (n = 410) or placebo (n = 206) every 3 weeks for 4 cycles, then pemetrexed maintenance plus pembrolizumab or placebo for up to a total of 35 cycles. Eligible patients with disease progression in the placebo-combination group could cross over to pembrolizumab monotherapy. Response was assessed per RECIST (version 1.1) by central review. No alpha was assigned to this updated analysis. RESULTS As of September 21, 2018 (median follow-up, 23.1 months), the updated median (95% CI) OS was 22.0 (19.5 to 25.2) months in the pembrolizumab-combination group versus 10.7 (8.7 to 13.6) months in the placebo-combination group (hazard ratio [HR], 0.56; 95% CI, 0.45 to 0.70]). Median (95% CI) PFS was 9.0 (8.1 to 9.9) months and 4.9 (4.7 to 5.5) months, respectively (HR, 0.48; 95% CI, 0.40 to 0.58). Median (95% CI) time from randomization to objective tumor progression on next-line treatment or death from any cause, whichever occurred first (progression-free-survival-2; PFS-2) was 17.0 (15.1 to 19.4) months and 9.0 (7.6 to 10.4) months, respectively (HR, 0.49; 95% CI, 0.40 to 0.59). OS and PFS benefits with pembrolizumab were observed regardless of PD-L1 expression or presence of liver/brain metastases. Incidence of grade 3-5 adverse events was similar in the pembrolizumab-combination (71.9%) and placebo-combination (66.8%) groups. CONCLUSION First-line pembrolizumab plus pemetrexed-platinum continued to demonstrate substantially improved OS and PFS in metastatic nonsquamous NSCLC, regardless of PD-L1 expression or liver/brain metastases, with manageable safety and tolerability.
Purpose: Pulmonary large cell neuroendocrine carcinoma (LCNEC) is a highly aggressive neoplasm, whose biologic relationship to small cell lung carcinoma (SCLC) versus non-SCLC (NSCLC) remains unclear, contributing to uncertainty regarding optimal clinical management. To clarify these relationships, we analyzed genomic alterations in LCNEC compared with other major lung carcinoma types. Experimental Design: LCNEC (n = 45) tumor/normal pairs underwent targeted next-generation sequencing of 241 cancer genes by Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) platform and comprehensive histologic, immunohistochemical, and clinical analysis. Genomic data were compared with MSK-IMPACT analysis of other lung carcinoma histologies (n = 242). Results: Commonly altered genes in LCNEC included TP53 (78%), RB1 (38%), STK11 (33%), KEAP1 (31%), and KRAS (22%). Genomic profiles segregated LCNEC into 2 major and 1 minor subsets: SCLC-like (n = 18), characterized by TP53+RB1 co-mutation/loss and other SCLC-type alterations, including MYCL amplification; NSCLC-like (n = 25), characterized by the lack of coaltered TP53+RB1 and nearly universal occurrence of NSCLC-type mutations (STK11, KRAS, and KEAP1); and carcinoid-like (n = 2), characterized by MEN1 mutations and low mutation burden. SCLC-like and NSCLC-like subsets revealed several clinicopathologic differences, including higher proliferative activity in SCLC-like tumors (P < 0.0001) and exclusive adenocarcinoma-type differentiation marker expression in NSCLC-like tumors (P = 0.005). While exhibiting predominant similarity with lung adenocarcinoma, NSCLC-like LCNEC harbored several distinctive genomic alterations, including more frequent mutations in NOTCH family genes (28%), implicated as key regulators of neuroendocrine differentiation. Conclusions: LCNEC is a biologically heterogeneous group of tumors, comprising distinct subsets with genomic signatures of SCLC, NSCLC (predominantly adenocarcinoma), and rarely, highly proliferative carcinoids. Recognition of these subsets may inform the classification and management of LCNEC patients. Clin Cancer Res; 22(14); 3618–29. ©2016 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.