An enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Genome-resolved metagenomics, single-cell genomics and geochemical analyses confirmed this hypothesis and linked microorganisms to groundwater compositions from different depths. Autotrophic Candidatus "Altiarchaeum sp." and phylogenetically deep-branching nanoarchaea dominate the deepest groundwater. A nanoarchaeon with limited metabolic capacity is inferred to be a potential symbiont of the Ca. "Altiarchaeum". Candidate Phyla Radiation bacteria are also present in the deepest groundwater and they are relatively abundant in water from intermediate depths. During the recovery phase of the geyser, microaerophilic Fe- and S-oxidizers have high in situ genome replication rates. Autotrophic Sulfurimonas sustained by aerobic sulfide oxidation and with the capacity for N fixation dominate the shallow aquifer. Overall, 104 different phylum-level lineages are present in water from these subsurface environments, with uncultivated archaea and bacteria partitioned to the deeper subsurface.
Unconventional natural gas extraction from tight sandstones, shales, and some coal-beds is typically accomplished by horizontal drilling and hydraulic fracturing that is necessary for economic development of these new hydrocarbon resources. Concerns have been raised regarding the potential for contamination of shallow groundwater by stray gases, formation waters, and fracturing chemicals associated with unconventional gas exploration. A lack of sound scientific hydrogeological field observations and a scarcity of published peer-reviewed articles on the effects of both conventional and unconventional oil and gas activities on shallow groundwater make it difficult to address these issues. Here, we discuss several case studies related to both conventional and unconventional oil and gas activities illustrating how under some circumstances stray or fugitive gas from deep gas-rich formations has migrated from the subsurface into shallow aquifers and how it has affected groundwater quality. Examples include impacts of uncemented well annuli in areas of historic drilling operations, effects related to poor cement bonding in both new and old hydrocarbon wells, and ineffective cementing practices. We also summarize studies describing how structural features influence the role of natural and induced fractures as contaminant fluid migration pathways. On the basis of these studies, we identify two areas where field-focused research is urgently needed to fill current science gaps related to unconventional gas extraction: (1) baseline geochemical mapping (with time series sampling from a sufficient network of groundwater monitoring wells) and (2) field testing of potential mechanisms and pathways by which hydrocarbon gases, reservoir fluids, and fracturing chemicals might potentially invade and contaminate useable groundwater.
Expansion of shale gas extraction has fueled global concern about fugitive methane impacts on groundwater and climate. Although methane leakage from wells is common, information regarding impacts to groundwater remains sparse, and is believed by many to be minor. We injected methane gas into a shallow, flat-lying sand aquifer for 72 days. While a significant fraction of methane vented to the atmosphere, an equal portion remained in the groundwater.Methane migration in the aquifer was governed by subtle grain-scale bedding that impeded buoyant free-phase gas flow, leading to episodic releases of free-phase gas, and fostering lateral gas migration farther than anticipated based on groundwater advection. Methane persisted in the groundwater zone despite active growth of methanotrophic bacteria, while much of the methane venting into the vadose zone was degraded. Our results show even small-volume releases of methane gas cause extensive free-phase and solute plumes emanating from leaks only detectable using well-established contaminant hydrogeology monitoring methods.
The present study employed 35S-labelled oligonucleotides and in situ hybridization to examine the distribution in the developing rat brain of mRNA encoding two galanin receptor subtypes, i.e. Gal-R1 and Gal-R2. Gal-R1 and/or Gal-R2 mRNA was detected at embryonic day (E) 20 and from postnatal day (P) 0-70. Gal-R1 mRNA was highly expressed in olfactory regions, ventral hippocampal CA fields, dorsomedial thalamic areas and many hypothalamic nuclei at all ages studied. In adult brain, Gal-R2 mRNA was most abundant in the dentate gyrus, anterior and posterior hypothalamus, raphe and spinal trigeminal nuclei, and in the dorsal motor nucleus of the vagus. At P0-P7, Gal-R2 mRNA was more widely distributed and abundant than at other ages, with highest levels of expression detected throughout the neocortex and thalamus. Thus, Gal-R2 transcripts had a more restricted distribution than Gal-R1 and were differentially abundant at different ages, while the distribution and relative abundance of Gal-R1 mRNA did not alter substantially during postnatal development. In general, Gal-R1 and -R2 mRNAs were localized in regions previously shown to contain [125I]-galanin binding sites and galanin-positive terminals in adult brain. Galanin-immunostaining was assessed in postnatal brain to determine whether peptide innervation correlated with observed transient receptor expression, but was not particularly enriched in Gal-R2 mRNA-positive areas of P4 or P7 brain. These results, together with earlier findings [e.g. Burazin, T. C. D. & Gundlach, A. L. (1998) J. Neurochem., 71, 879-882], suggest that Gal-R1 receptors have a broad role in normal synaptic transmission, while Gal-R2 receptors, in addition to a similar role in particular pathways, may be involved in processes prominent during the establishment and maturation of synaptic connections in developing brain and during neural damage and repair in the mature nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.