Use and interpretation of wireline lookahead VSP combined with LWD seismic while drilling and LWD sonic log for base of salt prediction, a case study offshore Brasil deep offshore Campos. It aimed to assist drilling decisions by obtaining a more accurate prediction of Base of Salt depth. Setting the 9-5/8" casing point was key from a drilling perspective.
One of the crucial components of well integrity evaluation in offshore drilling is to determine the cement bond quality assuring proper hydraulic sealing. On the Norwegian Continental Shelf (NCS) an industry standard as informative reference imposes verification of cement length and potential barriers using bonding logs. Traditionally, for the last 50 years, wireline (WL) sonic tools have been extensively used for this purpose. However, the applicability of logging-while-drilling (LWD) sonic tools for quantitative cement evaluation was explored in the recent development drilling campaign on the Dvalin Field in the Norwegian Sea, owing to significant advantages on operational efficiency and tool conveyance in any well trajectory. Cement bond evaluation from conventional peak-to-peak amplitude method has shown robust results up to bond indexes of 0.6 for LWD sonic tools. Above this limit, the casing signal is smaller than the collar signal and the amplitude method loses sensitivity to bonding. This practical challenge in the LWD realm was overcome through the inclusion of attenuation rate measurements, which responds accordingly in higher bonding environments. The two methods are used in a hybrid approach providing a full range quantitative bond index (QBI) introduced by Izuhara et al. (2017). In order to conform with local requirements related to well integrity and to ascertain the QBI potential from LWD monopole sonic, a wireline cement bond log (CBL) was acquired in the first well of the campaign for comparison. This enabled the strategic deployment of LWD QBI service in subsequent wells. LWD sonic monopole data was acquired at a controlled speed of 900ft/h. The high-fidelity waveforms were analyzed in a suitable time window and both amplitude- and attenuation-based bond indexes were derived. The combined hybrid bond index showed an excellent match with the wireline reference CBL, both in zones of high as well as lower cement bonding. The presence of formation arrivals was also in good correlation with zones of proper bonding distinguishable on the QBI results. This established the robustness of the LWD cement logging and ensured its applicability in the rest of the campaign which was carried out successfully. While the results from LWD cement evaluation service are omnidirectional, it comes with a wide range of benefits related to rig cost or conveyance in tough borehole trajectories. Early evaluation of cement quality by LWD sonic tools helps to provide adequate time for taking remedial actions if necessary. The LWD sonic as part of the drilling BHA enables this acquisition and service in non-dedicated runs, with the possibility of multiple passes for observing time-lapse effects. Also, the large sizes of LWD tools relative to the wellbore ensures a lower signal attenuation in the annulus and more effective stabilization, thereby providing a reliable bond index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.