JET carbon screening experiments were performed using methane gas injection. L-Mode experiments scanned parameters influencing the JET scrape-off-layer (SOL) and/or intrinsic impurity level. Scaling relations are derived to describe methane injected into L-Mode plasmas from the JET horizontal mid-plane. L-Mode screening was 3–20 times better for plasmas connected to the divertor than for similar limited plasmas. The screening was worse for methane injection from the mid-plane and best for injection from the divertor. The screening was 1.5–2 times worse for H-Mode than L-Mode. Both ELM-averaged and inter-ELM H-Mode screening was documented. The screening results were used to understand the intrinsic impurity levels. Zeff reduced at higher densities partly due to better carbon screening at the higher density, and partly due to decreased carbon influxes. Diverted L-Mode intrinsic carbon levels arose from both main chamber and divertor sources, while H-mode carbon primarily originated from the divertor. DIVIMP and EDGE2D were used to model the observed screening. The modelling indicated that carbon removal to the divertor required lower temperatures for Coulomb collisions to couple the impurity ions to the SOL deuterium flows. The carbon removal occurred primarily in the outer SOL regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.