Vibratory transport and technological machines (VTTM) are widely used in the various spheres of the industry: for transportation of the friable and separate particles, their dosed supply, sorting and realization of various technological processes.One of the factors that has an influence on the process of vibratory transportation is elasticity of the working member bottom of a vibratory transportation and technologic machine.This problem is less studied in theory of vibratory transportation [1, 2].A system vibratory drive – rigid frame of the vibratory member – elastic bottom of the working member – friable load” is considered in the report and dynamical and mathematical models of their interaction are worked out.A systematic approach to the study of influence of the working member elastic bottom on the technologic process is used and some results of the research are presented.It has been established with the help of developed models that at coincidence of phases of vibrations of the working member frame and elastic bottom rigidly fastened to it a speed of transportation of the friable material (load) rises significantly. On the bases of the mentioned result a new construction is developed.
The reasons of occurrence of non-working fluctuations in the vibratory machine are considered. The mathematical model of movement of the loaded resonant vibratory feeder is worked out and by means of mathematical modelling is shown influence of spatial non-working fluctuations on the character of the vibratory movement of the material. It is shown, that the combination of some non-working fluctuations with working resonant fluctuations an increase of speed and intensity of movement of the material is reached which is a constructionally realizable problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.