Friedmann–Robertson–Walker universes with a presently large fraction of the energy density stored in an X-component with wX<-1/3, are considered. We find all the critical points of the system for constant equations of state in that range. We consider further several background quantities that can distinguish the models with different wXvalues. Using a simple toy model with a varying equation of state, we show that even a large variation of wXat small redshifts is very difficult to observe with dL(z) measurements up to z~1. Therefore, it will require accurate measurements in the range 1<z<2 and independent accurate knowledge of Ωm,0(and/or ΩX,0) in order to resolve a variable wXfrom a constant wX.
Reaction mechanism analyses performed with a 4pi detector for the systems 208Pb + Ge, 238U + Ni and 238U + Ge, combined with analyses of the associated reaction time distributions, provide us with evidence for nuclei with Z=120 and 124 living longer than 10(-18) s and arising from highly excited compound nuclei. By contrast, the neutron deficient nuclei with Z=114 possibly formed in 208Pb + Ge reactions have shorter lifetimes, close to or below the sensitivity limit of the experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.