In this study, the thermal conductivity and viscosity of TiO 2 nanoparticles in deionized water were investigated up to a volume fraction of 3 % of particles. The nanofluid was prepared by dispersing TiO 2 nanoparticles in deionized water by using ultrasonic equipment. The mean diameter of TiO 2 nanoparticles was 21 nm. While the thermal conductivity of nanofluids has been measured in general using conventional techniques such as the transient hot-wire method, this work presents the application of the 3ω method for measuring the thermal conductivity. The 3ω method was validated by measuring the thermal conductivity of pure fluids (water, methanol, ethanol, and ethylene glycol), yielding accurate values within 2 %. Following this validation, the effective thermal conductivity of TiO 2 nanoparticles in deionized water was measured at temperatures of 13 • C, 23 • C, 40 • C, and 55 • C. The experimental results showed that the thermal conductivity increases with an increase of particle volume fraction, and the enhancement was observed to be 7.4 % over the base fluid for a nanofluid with 3 % volume fraction of TiO 2 nanoparticles at 13 • C. The increase in viscosity with the increase of particle volume fraction was much more than predicted by the Einstein model. From this research, it seems that the increase in the nanofluid viscosity is larger than the enhancement in the thermal conductivity.A. Turgut · I. Tavman (B)
High-density polyethylene (HDPE)-based nanocomposites incorporating three different types of graphene nanoplatelets (GnPs) were fabricated to investigate the size effects of GnPs in terms of both lateral size and thickness on the morphological, thermal, electrical, and mechanical properties. The results show that the inclusion of GnPs enhance the thermal, electrical, and mechanical properties of HDPE-based nanocomposites regardless of GnP size. Nevertheless, the most significant enhancement of the thermal and electrical conductivities and the lowest electrical percolation threshold were achieved with GnPs of a larger lateral size. This could have been attributed to the fact that the GnPs of larger lateral size exhibited a better dispersion in HDPE and formed conductive pathways easily observable in scanning electron microscope (SEM) images. Our results show that the lateral size of GnPs was a more regulating factor for the above-mentioned nanocomposite properties compared to their thickness. For a given lateral size, thinner GnPs showed significantly higher electrical conductivity and a lower percolation threshold than thicker ones. On the other hand, in terms of thermal conductivity, a remarkable amount of enhancement was observed only above a certain filler concentration. The results demonstrate that GnPs with smaller lateral size and larger thickness lead to lower enhancement of the samples’ mechanical properties due to poorer dispersion compared to the others. In addition, the size of the GnPs had no considerable effect on the melting and crystallization properties of the HDPE/GnP nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.