The influence of the anti-fungal agent phosphonate (Phi) on the response of oilseed rape (Brassica napus L. cv. Jet Neuf) cell suspensions to inorganic phosphate (Pi) starvation was examined. Subculture of the cells for 7 d in the absence of Pi increased acid phosphate (APase; EC 3.1.3.2) and pyrophosphate (PPi)-dependent phosphofructokinase (PFP; EC 2.7.1.90) activities by 4.5- and 2.8-fold, respectively, and led to a 19-fold increase in Vmax and a 14-fold decrease in Km (Pi) and Pi uptake. Addition of 2 mM Pi to the nutrient media caused dramatic reductions in the growth and Pi content of the Pi-starved, but not Pi-sufficient cells, and largely abolished the Pi-starvation-dependent induction of PFP, APase, and the high-affinity plasmalemma Pi translocator. Immunoblotting indicated the cells contain three APase isoforms that are synthesized de novo following Pi stress, and that Pi treatment represses this process. Phosphonate treatment of Pi-starved cells significantly altered the relative extent of in-vivo 32P-labelling of polypeptides having M(rs) of 66, 55, 45 and 40 kDa. However, Phi had no effect on the total adenylate pool of Pi-starved cells which was about 32% lower than that of Pi-sufficient cells by day 7. Soluble protein levels, and activities of pyruvate kinase (EC 2.7.1.40) and ATP-dependent phosphofructokinase (EC 2.7.1.11) were unaffected by Pi starvation and/or Phi treatment. The effects of Phi on the growth, and APase and PFP activities of Pi-starved B. napus seedlings were similar to those observed in the suspension cells. The results re consistent with the hypothesis that a primary site of Phi action in higher plants is at the level of the signal transduction chain by which plants perceive and respond to Pi stress at the molecular level.
The influence of the anti-fungal agent phosphonate (Phi) on the response of oilseed rape (Brassica napus L. cv. Jet Neuf) cell suspensions to inorganic phosphate (Pi) starvation was examined. Subculture of the cells for 7 d in the absence of Pi increased acid phosphate (APase; EC 3.1.3.2) and pyrophosphate (PPi)-dependent phosphofructokinase (PFP; EC 2.7.1.90) activities by 4.5- and 2.8-fold, respectively, and led to a 19-fold increase in Vmax and a 14-fold decrease in Km (Pi) and Pi uptake. Addition of 2 mM Pi to the nutrient media caused dramatic reductions in the growth and Pi content of the Pi-starved, but not Pi-sufficient cells, and largely abolished the Pi-starvation-dependent induction of PFP, APase, and the high-affinity plasmalemma Pi translocator. Immunoblotting indicated the cells contain three APase isoforms that are synthesized de novo following Pi stress, and that Pi treatment represses this process. Phosphonate treatment of Pi-starved cells significantly altered the relative extent of in-vivo 32P-labelling of polypeptides having M(rs) of 66, 55, 45 and 40 kDa. However, Phi had no effect on the total adenylate pool of Pi-starved cells which was about 32% lower than that of Pi-sufficient cells by day 7. Soluble protein levels, and activities of pyruvate kinase (EC 2.7.1.40) and ATP-dependent phosphofructokinase (EC 2.7.1.11) were unaffected by Pi starvation and/or Phi treatment. The effects of Phi on the growth, and APase and PFP activities of Pi-starved B. napus seedlings were similar to those observed in the suspension cells. The results re consistent with the hypothesis that a primary site of Phi action in higher plants is at the level of the signal transduction chain by which plants perceive and respond to Pi stress at the molecular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.