Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.
SUMMARY1. Stable N-methyl-D-aspartic acid (NMDA) receptor-mediated currents in cultured mouse hippocampal neurones were evoked by 20 ms pressure pulse applications of L-aspartate, repeatedly applied at 30 or 40 s intervals, to the cell body region of the neurone. We have characterized the voltage-and use-dependent blockade of the currents by three dissociative anaesthetics: ketamine, phencyclidine (PCP) and MK-801 in mouse hippocampal neurones grown in dissociated tissue culture.2. We have used a simple model of the blockade, based on the 'guarded receptor hypothesis' to interpret our data. The model assumes that receptors are maximally activated at the peak of the response with an open probability (PO) approaching 1, that there is no desensitization and that the blocking drug only associates with, or dissociates from, receptor channels which have been activated by agonist (e.g. open channels).3. The model allows us to estimate forward and reverse rate constants for binding of the blockers to open channels from measurements of the steady-state level of blockade and the rate of change of the current amplitude per pulse during onset and offset of blockade. As predicted by the model, the estimated reverse rate was independent of blocker concentration while the forward rate increased with concentration. Changing the level of positively charged ketamine (pKa 7 5) tenfold by changing pH from 6-5 to 8-5 caused a corresponding change in the forward rate while having no effect on the reverse rate. Most of the voltage dependence of the blockade could be accounted for by reduction of the reverse rate by depolarization.4. Estimated forward rate constants for ketamine, PCP and MK-801 were similar to one another when measured under similar conditions and were 3 x 104-3 x 105 M-1 s-1. Most of the differences in potency of the three blockers could be accounted for by differences in the reverse rate constants which were approximately 0-2, 0 03 and 0 003 s-1 for ketamine, PCP and MK-801, respectively.The estimated rate constants actually are the product of the rate constants and 1/PO. I 843616-2 J. F. MAcDONALD AND OTHERS Suggestions that maximum P. is much less than 1 for NMDA channels imply that both forward and reverse rate constants of blockade may in fact be larger than we have calculated. However, their magnitudes, relative to one another, are unaffected by this consideration. 5. The reverse rate constant of blockade increased at positive potentials. This increase was prevented when the neurone was loaded with N-methyl-D-glucamine, an impermeant cation which prevented outward currents. This observation suggests that the voltage-dependent blockade by dissociative anaesthetics is in fact current dependent and reflects displacement of anaesthetic molecules, bound to the vicinity of the outer mouth of the channel, by intracellular cations that move out of the cell via the channel at positive potentials. This suggestion is supported by the observation that the voltage dependence of the blockade by the neutral PCP analogue, 1-(1-...
The human multidrug resistance P-glycoprotein (Pgp, ABCB1) transports a wide variety of structurally diverse compounds out of the cell. The drug-binding pocket of P-gp is located in the transmembrane domains. Although occupation of the drug-binding pocket by one molecule is sufficient to activate the ATPase activity of P-gp, the drug-binding pocket may be large enough to accommodate two different substrates at the same time. In this study, we used cysteine-scanning mutagenesis to test whether P-gp could simultaneously interact with the thiol-reactive drug substrate, Tris-(2-maleimidoethyl)amine (TMEA) and a second drug substrate. TMEA is a cross-linker substrate of P-gp that allowed us to test for stimulation of cross-linking by a second substrate such as calcein-acetoxymethyl ester, colchicine, demecolcine, cyclosporin A, rhodamine B, progesterone, and verapamil. We report that verapamil induced TMEA cross-linking of mutant F343C(TM6)/ V982C(TM12). By contrast, no cross-linked product was detected in mutants F343C(TM6), V982C(TM12), or F343C(TM6)/V982C(TM12) in the presence of TMEA alone. The verapamil-stimulated ATPase activity of mutant F343C(TM6)/V982C(TM12) in the presence of TMEA decreased with increased cross-linking of the mutant protein. These results show that binding of verapamil must induce changes in the drug-binding pocket (induced-fit mechanism) resulting in exposure of residues F343C(TM6)/V982C(TM12) to TMEA. The results also indicate that the common drug-binding pocket in P-gp is large enough to accommodate both verapamil and TMEA simultaneously and suggests that the substrates must occupy different regions in the common drug-binding pocket.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.