This paper presents a map of Africa's rainforests for 2005. Derived from moderate resolution imaging spectroradiometer data at a spatial resolution of 250 m and with an overall accuracy of 84%, this map provides new levels of spatial and thematic detail. The map is accompanied by measurements of deforestation between 1990, 2000 and 2010 for West Africa, Central Africa and Madagascar derived from a systematic sample of Landsat images—imagery from equivalent platforms is used to fill gaps in the Landsat record. Net deforestation is estimated at 0.28% yr−1 for the period 1990–2000 and 0.14% yr−1 for the period 2000–2010. West Africa and Madagascar exhibit a much higher deforestation rate than the Congo Basin, for example, three times higher for West Africa and nine times higher for Madagascar. Analysis of variance over the Congo Basin is then used to show that expanding agriculture and increasing fuelwood demands are key drivers of deforestation in the region, whereas well-controlled timber exploitation programmes have little or no direct influence on forest-cover reduction at present. Rural and urban population concentrations and fluxes are also identified as strong underlying causes of deforestation in this study.
.[1] This contribution illustrates results from a large-scale application of the Joint Research Centre Two-stream Inversion Package (JRC-TIP), using MODIS broadband visible and near-infrared white sky surface albedos as inputs. The discussion focuses on products (based on the mean and one-sigma values of the probability distribution functions (PDFs)) obtained during the summer and winter. This paper discusses the retrieved model parameters including the effective leaf area index (LAI), the background brightness, and the scattering efficiency of the vegetation elements. The similarity between the derived LAI seasonal maps and earlier distributions of this variable comforts us in the quality of the albedo products as well as in the ability of the JRC-TIP to interpret the latter meaningfully. The opportunity to generate global maps of new products, such as the background albedo, underscores the advantages of using state of the art algorithmic approaches capable of fully exploiting accurate satellite remote sensing data sets. The detailed analyses of the retrieval uncertainties highlight the central role and contribution of the LAI, the main process parameter to interpret radiation transfer observations over vegetated surfaces. The estimation of the radiation fluxes that are absorbed, transmitted, and scattered by the vegetation layer and its background is achieved on the basis of the retrieved PDFs of the model parameters. Results from this latter step are discussed in a companion paper.
[1] Remotely sensed, multiannual data sets of shortwave radiative surface fluxes are now available for assimilation into land surface schemes (LSSs) of climate and/or numerical weather prediction models. The RAMI4PILPS suite of virtual experiments assesses the accuracy and consistency of the radiative transfer formulations that provide the magnitudes of absorbed, reflected, and transmitted shortwave radiative fluxes in LSSs. RAMI4PILPS evaluates models under perfectly controlled experimental conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical for model comparison with in situ observations. More specifically, the shortwave radiation is separated into a visible and near-infrared spectral region, and the quality of the simulated radiative fluxes is evaluated by direct comparison with a 3-D Monte Carlo reference model identified during the third phase of the Radiation transfer Model Intercomparison (RAMI) exercise. The RAMI4PILPS setup thus allows to focus in particular on the numerical accuracy of shortwave radiative transfer formulations and to pinpoint to areas where future model improvements should concentrate. The impact of increasing degrees of structural and spectral subgrid variability on the simulated fluxes is documented and the relevance of any thus emerging biases with respect to gross primary production estimates and shortwave radiative forcings due to snow and fire events are investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.