We describe herein the design, synthesis, biological evaluation, and structure–activity relationship (SAR) studies of an innovative class of antimalarial agents based on a polyaromatic pharmacophore structurally related to clotrimazole and easy to synthesize by low-cost synthetic procedures. SAR studies delineated a number of structural features able to modulate the in vitro and in vivo antimalarial activity. A selected set of antimalarials was further biologically investigated and displayed low in vitro toxicity on a panel of human and murine cell lines. In vitro, the novel compounds proved to be selective for free heme, as demonstrated in the β-hematin inhibitory activity assay, and did not show inhibitory activity against 14-α-lanosterol demethylase (a fungal P450 cytochrome). Compounds 2, 4e, and 4n exhibited in vivo activity against P. chabaudi after oral administration and thus represent promising antimalarial agents for further preclinical development.
Antimalarial agents structurally based on novel pharmacophores, synthesized by low-cost synthetic procedures and characterized by low potential for developing resistance are urgently needed. Recently, we developed an innovative class of antimalarials based on a polyaromatic pharmacophore. Hybridizing the 4-aminoquinoline or the 9-aminoacridine system of known antimalarials with the clotrimazole-like pharmacophore, characterized by a polyarylmethyl group, we describe herein the development of a unique class (4a-l and 5a-c) of antimalarials selectively interacting with free heme and interfering with Plasmodium falciparum (Pf) heme metabolism. Combination of the polyarylmethyl system, able to form and stabilize radical intermediates, with the iron-complexing and conjugation-mediated electron transfer properties of the 4(9)-aminoquinoline-(acridine) system led to potent antimalarials in vitro against chloroquine sensitive and resistant Pf strains. Among the compounds synthesized, 4g was active in vivo against P. chabaudi and P. berghei after oral administration and, possessing promising pharmacokinetic properties, it is a candidate for further preclinical development.
The preservation of a graft's aberrant left hepatic artery (LHA) during liver transplantation (LT) ensures optimal vascularization of the left liver but can also be considered a risk factor for hepatic artery thrombosis (HAT). In contrast, ligation of an aberrant LHA may lead to hepatic ischemia with the potential risk of graft dysfunction and biliary complications. The aim of this study was to prospectively analyze the impact on the surgical strategy for LT of 5 tests performed to establish whether an aberrant LHA was an accessory or a replaced artery, thus leading to the design of a decisional algorithm. From August 2005 to December 2016, 395 whole LTs were performed in 376 patients. Five parameters were evaluated to determine whether an aberrant LHA was an accessory or a replaced artery. On the basis of our decision algorithm, an aberrant LHA was ligated during surgery when assessed as accessory and preserved when assessed as replaced. A total of 138 anatomical variants of hepatic arterial vascularization occurred in 120/395 (30.4%) grafts. Overall, the incidence of an aberrant LHA was 63/395 (15.9%). The LHA was ligated in 33 (52.4%) patients and preserved in 30 (47.6%) patients. After a mean follow-up period of 50.9 ± 39.7 months, the incidence of HAT, primary nonfunction, early allograft dysfunction, biliary stricture or leaks, and overall survival was similar in the 2 groups. In conclusion, once shown to be an accessory, an LHA can be safely ligated without clinical consequences on the outcome of LT. Liver Transplantation 24 204-213 2018 AASLD.
Previous literature has highlighted the mechanisms of molecular toxicity induced by substances such as arsenic, cadmium, chromium, nickel, lead, barium and PCBs. The research was carried out on 20 volunteers, all the patients gave their consent to the research: the aim of the study was to evaluate the presence of metals and PCBs in these different matrices (blood and hair), correlating the biochemical data to pathological conditions present, and also to the area in which patients resided. Various quantitative determinations were carried out on samples of blood and hair for 14 heavy metals and on blood samples for 12 PCBs. For the 11 patients the results indicated that blood levels for half of the 14 displayed heavy metals measured considerably higher compared to the reference values, whilst the levels measured in hair evidenced some positive values significantly higher than the maximum reference. Of the 12 PCBs assayed in blood some showed higher positive values compared to the maximum tabular reference (although there is no clear reference quantified in the WHO-2005 report). In the 9 healthy patients heavy metals in the blood were within the expected target range, with those showing positive results (≤ 3 out of 14 heavy metals for each patient) having values only slightly higher than the reference maximum. The levels of 14 heavy metals measured in hair were below thresholds, and levels for the 12 PCBs measured in blood showed negativity or positivity with values close to the minimum benchmarks. The analyses carried out on biological matrices have uncovered important and significant differences between healthy and unhealthy subjects, both qualitative and quantitative differences with respect to heavy metals and PCBs. All patients with head and neck cancer enlisted for the study had heavy metal and PCB blood levels at least twice the maximum reference level. The levels of heavy metals in hair were at least double the maximum reference. In contrast, all healthy volunteers enrolled showed no significant levels for either metals or PCBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.