The feasibility of anaerobic ammonium oxidation (anammox) process to treat wastewaters containing antibiotics and heavy metals (such as the liquid fraction of the anaerobically digested swine manure) was studied in this work. The specific anammox activity (SAA) was evaluated by means of manometric batch tests. The effects of oxytetracycline, sulfathiazole, copper and zinc were studied. The experimental data of the short-term assays were fitted with an inhibition model to identify the half maximal inhibitory concentration (IC(50)). After 24 h exposures, IC(50)-values equal to 1.9, 3.9, 650 and 1,100 mg L(-1) were identified for copper, zinc, sulfathiazole and tetracycline respectively. The effect of prolonged exposure (14 days) to oxytetracycline and sulfathiazole was studied by means of repeated batch-assays. Anabolism and catabolism reactions were active during the inhibition tests indicating that anammox bacteria could grow even in the extreme conditions tested. Considering the average concentrations expected in swine wastewaters, the inhibitors studied do not seem to represent a problem for the application of the anammox process. However, in order to verify the effect of these compounds on the growth of anammox bacteria, continuous culture experiments could be conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.