Abstract. This paper presents a new Multiview Stereo Pipeline (MVS), called CARS, dedicated to satellite imagery. This pipeline is intended for massive Digital Surface Model (DSM) production and has therefore been designed to maximize scalability robustness and performance. Those two properties have driven the design of the workflow as well as the choice of algorithms and parameter trends, making our pipeline unique with respect to existing solutions in literature. This paper intends to serve as a reference paper for the pipeline implementation, and therefore provides a detailed description of algorithms and workflow. It also demonstrates the pipeline robustness and stability in several use cases, and compares its accuracy with the state-of-the-art pipelines on a reference dataset.
Abstract. Several 3D reconstruction pipelines are being developed around the world for satellite imagery. Most of them implement their own versions of Semi-Global Matching, as an option for the matching step. However, deep learning based solutions already outperform every SGM derived algorithms on Kitti and Middlebury stereo datasets. But these deep learning based solutions need huge quantities of ground truths for training. This implies that the generation of ground truth stereo datasets, from satellite imagery and lidar, seems to be of great interest for the scientific community. It will aim at reducing the potential transfer learning difficulties, that could arise from a training done on datasets such as Middlebury or Kitti. In this work, we present a new ground truth generation pipeline. It produces stereo-rectified images and ground truth disparity maps, from satellite imagery and lidar. We also assess the rectification and the disparity accuracies of these outputs. We finally train a deep learning network on our preliminary ground truth dataset.
Commission V, WG V/4KEY WORDS: 2D Stereo Matching, Sub-pixel Disparity, Geometric Calibration, QPEC, Medicis ABSTRACT:In the frame of its earth observation missions, CNES created a library called QPEC, and one of its launcher called Medicis. QPEC / Medicis is a sub-pixel two-dimensional stereo matching algorithm that works on an image pair. This tool is a block matching algorithm, which means that it is based on a local method. Moreover it does not regularize the results found. It proposes several matching costs, such as the Zero mean Normalised Cross-Correlation or statistical measures (the Mutual Information being one of them), and different match validation flags. QPEC / Medicis is able to compute a two-dimensional dense disparity map with a subpixel precision. Hence, it is more versatile than disparity estimation methods found in computer vision literature, which often assume an epipolar geometry. CNES uses Medicis, among other applications, during the in-orbit image quality commissioning of earth observation satellites. For instance the Pléiades-HR 1A & 1B and the Sentinel-2 geometric calibrations are based on this block matching algorithm. Over the years, it has become a common tool in ground segments for in-flight monitoring purposes. For these two kinds of applications, the two-dimensional search and the local sub-pixel measure without regularization can be essential. This tool is also used to generate automatic digital elevation models, for which it was not initially dedicated. This paper deals with the QPEC / Medicis algorithm. It also presents some of its CNES applications (in-orbit commissioning, in flight monitoring or digital elevation model generation). Medicis software is distributed outside the CNES as well. This paper finally describes some of these external applications using Medicis, such as ground displacement measurement, or intra-oral scanner in the dental domain.
Commission VI, WG VI/4KEY WORDS: Sentinel-2 (S2), Global Reference Image (GRI), multi-temporal registration, Digital Surface Model (DSM) ABSTRACT:In the frame of the Copernicus program of the European Commission, Sentinel-2 is a constellation of 2 satellites with a revisit time of 5 days in order to have temporal images stacks and a global coverage over terrestrial surfaces. Satellite 2A was launched in June 2015, and satellite 2B will be launched in March 2017. In cooperation with the European Space Agency (ESA), the French space agency (CNES) is in charge of the image quality of the project, and so ensures the CAL/VAL commissioning phase during the months following the launch. This cooperation is also extended to routine phase as CNES supports European Space Research Institute (ESRIN) and the Sentinel-2 Mission performance Centre (MPC) for validation in geometric and radiometric image quality aspects, and in Sentinel-2 GRI geolocation performance assessment whose results will be presented in this paper. The GRI is a set of S2A images at 10m resolution covering the whole world with a good and consistent geolocation. This ground reference enables accurate multi-temporal registration of refined Sentinel-2 products. While not primarily intended for the generation of DSM, Sentinel-2 swaths overlap between orbits would also allow for the generation of a complete DSM of land and ices over 60° of northern latitudes (expected accuracy: few S2 pixels in altimetry). This DSM would benefit from the very frequent revisit times of Sentinel-2, to monitor ice or snow level in area of frequent changes, or to increase measurement accuracy in areas of little changes.* This work was performed in cooperation with ESA/ESRIN in the frame of SENTINEL-2 Image Quality CAL/VAL activities, and was also supported by CNES SWOT project and LEGOS concerning DSM studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.