Biodiesel production has increased greatly in recent years, because of the less-detrimental effects of this fuel on the environment, compared to a conventional diesel obtained from petroleum. This work investigates the possibility of using MgO and calcined hydrotalcites as catalysts for the transesterification of soybean oil with methanol. The achieved experimental data show a correlation not only with the catalysts basicity, but also with its structural texture. However, the structural texture of the examined catalysts is dependent on both the precursor and the preparation method. At least four different types of basic sites have been individuated on the surface of MgO and calcined hydrotalcite catalysts. The strongest basic sites (super-basic) promote the transesterification reaction also at very low temperature (100°C), while the basic sites of medium strength require higher temperatures to promote the same reaction. Ultimately, all the tested catalysts are resistant to the presence of moisture in the reaction environment.
The production of biodiesel as a fuel in diesel engines greatly increased in recent years and is expected to grow more and more in the near future. Increasing biodiesel consumption requires optimized production processes allowing high production capacities, simplified operations, high yields, and the use of more economic feedstocks such as waste oils and fats. However, the latter often contain large amounts of free fatty acids and cannot be processed with the commonly practiced technology based on the use of alkaline catalysts in the homogeneous phase that requires the use of highly refined oil as raw materials. Therefore, the development of processes for low-cost biodiesel production requires the individuation of heterogeneous catalysts that are very efficient in promoting the transesterification reaction also in the presence of free fatty acids and water, allowing the prompt separation of pure glycerol and not requiring expensive purification of this byproduct. In the present contribution, the performances of different heterogeneous catalysts are compared both in the absence and in the presence of free fatty acids. In some cases, the resistance of the catalysts to the presence of water and the eventual deactivating effects after the first use have also been tested. The catalysts considered are both basic and acidic in nature, such as hydrotalcite, MgO, TiO 2 grafted on silica, vanadyl phosphate, and different metals-substituted vanadyl phosphate of the type Me(H 2 O) x VO 1-x PO 4 ‚2H 2 O, where Me is a trivalent cation such as Al, Ga, Fe, and Cr and where x ) 0.18-0.20. Finally, the understanding of the kinetic behavior of the most stable catalyst TiO 2 /SiO 2 has been deepened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.