In this work, a three-layered heterostructure Cu2O/CuO/CuS was obtained through a low-cost and large-area fabrication route comprising electrodeposition, thermal oxidation, and reactive annealing in a sulfur atmosphere. Morphological, microstructural, and compositional analysis (AFM, SEM, XRD, EDS, XPS) were carried out to highlight the surface modification of cuprous oxide film after oxidation and subsequent sulfurization. Impedance, voltammetric, and amperometric photoelectrochemical tests were performed on Cu2O, Cu2O/CuO, and Cu2O/CuO/CuS photocathodes in a sodium sulfate solution (pH 5), under 100 mW cm−2 AM 1.5 G illumination. A progressive improvement in terms of photocurrent and stability was observed after oxidation and sulfurization treatments, reaching a maximum of − 1.38 mA cm−2 at 0 V versus RHE for the CuS-modified Cu2O/CuO electrode, corresponding to a ~ 30% improvement. The feasibility of the proposed method was demonstrated through the fabrication of a large area photoelectrode of 10 cm2, showing no significant differences in characteristics if compared to a small area photoelectrode of 1 cm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.