To achieve food and energy security, sustainable bioenergy has become an important goal for many countries. The use of marginal lands to produce energy crops is one strategy for achieving this goal, but what is marginal land? Current definitions generally focus on a single criterion, primarily agroeconomic profitability. Herein, we present a framework that incorporates multiple criteria including profitability of current land use, soil health indicators (erosion, flooding, drainage, or high slopes), and environmental degradation resulting from contamination of surface water or groundwater resources. We tested this framework for classifying marginal land in the state of Nebraska and estimated the potential for using marginal land to produce biofuel crops. Our results indicate that approximately 1.6 million ha, or 4 million acres, of land (approximately 8% of total land area) could be classified as marginal on the basis of at least two criteria. Second-generation lignocellulosic bioenergy crops such as switchgrass ( Panicum virgatum L.), miscanthus (Miscanthus giganteus), native prairie grasses, and short-rotation woody crops could be grown on this land in redesigned landscapes that meet energy and environmental needs, without significant impacts on food or feed production. Calculating tradeoffs between the economics of redesigned landscapes and current practices at the field scale is the next step for determining functional designs for integrating biofuel feedstock production into current land management practices.
There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.
Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. In this study, we investigate an alternative cropping system where bioenergy crops are grown in buffer strips adjacent to current agricultural crops such that nutrients present in runoff and leachate from the traditional row-crops are reused by the bioenergy crops (switchgrass, miscanthus and native prairie grasses) in the buffer strips, thus providing environmental services and meeting economic needs of farmers. The process-based biogeochemical model Denitrification-Decomposition (DNDC) was used to simulate crop yield, nitrous oxide production and nitrate concentrations in leachate for a typical agricultural field in Illinois. Model parameters have been developed for the first time for miscanthus and switchgrass in DNDC. Results from model simulations indicated that growing bioenergy crops in buffer strips mitigated nutrient runoff, reduced nitrate concentrations in leachate by 60-70% and resulted in a reduction of 50-90% in nitrous oxide emissions compared with traditional cropping systems. While all the bioenergy crop buffers had significant positive environmental benefits, switchgrass performed the best with respect to minimizing nutrient runoff and nitrous oxide emissions, while miscanthus had the highest yield. Overall, our model results indicated that the bioenergy crops grown in these buffer strips achieved yields that are comparable to those obtained for traditional agricultural systems while simultaneously providing environmental services and could be used to design sustainable agricultural landscapes.
This paper proposes a method of assessing the distribution of chlorinated solvents in soil and ground water using tree branches. Sampling branches is a potentially more cost‐effective and easier method than sampling tree cores, with less risk of damage to the tree. This approach was tested at Argonne National Laboratory, where phytoremediation is being used to remove tetrachloroethene (PCE), trichloroethene (TCE), and carbon tetrachloride (CCl4) from soil and ground water. The phytoremediation system consists of shallow‐rooted willows planted in an area with contaminated soil and deep‐rooted poplars planted in an area with clean soil and contaminated ground water. Branch samples were collected from 126 willows and 120 poplars. Contaminant concentrations from 31 soil borings and six monitoring wells were compared to those from branches of adjacent trees. Regression equations with correlation coefficients of at least 0.89 were obtained, which were found to be chemical specific. Kriged profiles of TCE concentration based on soil and willow branch data were developed and showed good agreement. Profiles based on ground water data could not be developed due to lack of sufficient monitoring wells for a meaningful statistical analysis. An analytical model was used to simulate TCE concentrations in tree branches from soil concentrations; the diffusion coefficient for TCE in the tree was used as the fitting parameter and the best‐fit value was two orders of magnitude greater than literature values. This work indicates that tree branch sampling is a useful approach to assess contaminant distribution and potentially to determine where to locate monitoring wells or perform detailed soil analysis. Further research is necessary prior to using this method as a quantitative monitoring tool for soil and ground water.
The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, 'How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?' To address this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest Bioenergy (2017Bioenergy ( ) 9, 1296Bioenergy ( -1305Bioenergy ( , doi: 10.1111 land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and appropriate reference scenarios. Long-term monitoring data on forest conditions should be publicly accessible and utilized to inform adaptive management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.