The contaminant release from estuarine sediment due to pH changes was investigated using a modified CEN/TS 14429 pH-dependence leaching test. The test is performed in the range of pH values of 0-14 using deionised water and seawater as leaching solutions. The experimental conditions mimic different circumstances of the marine environment due to the global acidification, carbon dioxide (CO2) leakages from carbon capture and sequestration technologies, and accidental chemical spills in seawater. Leaching test results using seawater as leaching solution show a better neutralisation capacity giving slightly lower metal leaching concentrations than when using deionised water. The contaminated sediment shows a low base-neutralisation capacity (BNCpH 12 = -0.44 eq/kg for deionised water and BNCpH 12 = -1.38 eq/kg for seawater) but a high acid-neutralisation capacity when using deionised water (ANCpH 4 = 3.58 eq/kg) and seawater (ANCpH 4 = 3.97 eq/kg). Experimental results are modelled with the Visual MINTEQ geochemical software to predict metal release from sediment using both leaching liquids. Surface adsorption to iron- and aluminium-(hydr)oxides was applied for all studied elements. The consideration of the metal-organic matter binding through the NICA-Donnan model and Stockholm Humic Model for lead and copper, respectively, improves the former metal release prediction. Modelled curves can be useful for the environmental impact assessment of seawater acidification due to its match with the experimental values.
This study provides a better knowledge of key parameters controlling the mobility of Dissolved Organic Carbon (DOC), As, Cd, Cr, Cu, Ni, Pb and Zn from contaminated marine sediment in contact with acidified seawater using static and dynamic standard leaching tests. These procedures have been modified in order to use different leaching agents, L/S ratios, contact times and pH values that simulate seawater acidification under CO 2 leakages scenarios. Studied sediment from a potential area of CO 2 storage, shows a high acid neutralisation capacity (ANC pH=4 =3.58 eq/kg) for deionised water as well as for seawater (ANC pH=4 =3.97 eq/kg). The availability control mechanism is shown by releasing Cd with seawater at pH values 6, 7 and 8 and by the releasing of Zn with seawater at pH 6; the solubility control mechanism appears for Ni release using natural seawater. Experimental results of metal release from the pH dependence leaching test are modelled with Visual MINTEQ geochemical software to predict metal release from sediment, obtaining minor differences with experimental values. An improvement in the metal release results has been obtained considering in the model the influence of the DOC, Fe-and Al-(hydr)oxides, humic acids and fulvic acids. The obtained results would be useful as a line of evidence input for the risk assessment of a Carbon Capture and Storage site where acidified seawater at different concentrations of CO 2 is in contact with sediment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.