We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous submm imagery suggested the existence of the dust-depleted cavity at r ≤ 46 AU, our observations reveal the presence of scattered light components as close as 0. ′′ 2 (∼ 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0. ′′ 5 (∼ 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h ∼ 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.
According to the current paradigm of circumstellar disk evolution, gas-rich primordial disks evolve into gas-poor debris disks composed of second-generation dust. To explore the transition between these phases, we searched for 12 CO, 13 CO, and C 18 O emission in seven dust-rich debris disks around young A-type stars, using ALMA in Band 6. We discovered molecular gas in three debris disks. In all these disks, the 12 CO line was optically thick, highlighting the importance of less abundant molecules in reliable mass estimates. Supplementing our target list by literature data, we compiled a volume-limited sample of dust-rich debris disks around young A-type stars within 150 pc. We obtained a CO detection rate of 11/16 above a 12 CO J=2-1 line luminosity threshold of ∼1.4×10 4 Jy km s −1 pc 2 in the sample. This high incidence implies that the presence of CO gas in bright debris disks around young A-type stars is likely more the rule than the exception. Interestingly, dust-rich debris disks around young FG-type stars exhibit, with the same detectability threshold as for A-type stars, significantly lower gas incidence. While the transition from protoplanetary to debris phase is associated with a drop of dust content, our results exhibit a large spread in the CO mass in our debris sample, with peak values comparable to those in protoplanetary Herbig Ae disks. In the particularly CO-rich debris systems the gas may have primordial origin, characteristic of a hybrid disk.
Context. Recently, evidence for the presence of weak magnetic fields in Herbig Ae/Be stars has been found in several studies. Aims. We seek to expand the sample of intermediate-mass pre-main sequence stars with circular polarization data to measure their magnetic fields, and to determine whether magnetic field properties in these stars are correlated with mass-accretion rate, disk inclination, companions, silicates, PAHs, or show a correlation with age and X-ray emission as expected for the decay of a remnant dynamo. Methods. Spectropolarimetric observations of 21 Herbig Ae/Be stars and six debris disk stars have been obtained at the European Southern Observatory with FORS 1 mounted on the 8 m Kueyen telescope of the VLT. With the GRISM 600B in the wavelength range 3250-6215 Å we were able to cover all hydrogen Balmer lines from Hβ to the Balmer jump. In all observations a slit width of 0. 4 was used to obtain a spectral resolving power of R ≈ 2000. Results. Among the 21 Herbig Ae/Be stars studied, new detections of a magnetic field were achieved in six stars. For three Herbig Ae/Be stars, we confirm previous magnetic field detections. The largest longitudinal magnetic field, B z = −454 ± 42 G, was detected in the Herbig Ae/Be star HD 101412 using hydrogen lines. No field detection at a significance level of 3σ was achieved in stars with debris disks. Our study does not indicate any correlation of the strength of the longitudinal magnetic field with disk orientation, disk geometry, or the presence of a companion. We also do not see any simple dependence on the mass-accretion rate. However, it is likely that the range of observed field values qualitatively supports the expectations from magnetospheric accretion models giving support for dipole-like field geometries. Both the magnetic field strength and the X-ray emission show hints of a decline with age in the range of ∼2-14 Myr probed by our sample, supporting a dynamo mechanism that decays with age. However, our study of rotation does not show any obvious trend of the strength of the longitudinal magnetic field with rotation period. Furthermore, the stars seem to obey the universal power-law relation between magnetic flux and X-ray luminosity established for the Sun and main-sequence active dwarf stars.
The theory of radiation driven wind including stellar rotation is re-examined. After a suitable change of variables, a new equation for the mass loss rate is derived analytically. The solution of this equation remains within 1% confidence when compared with numerical solutions. Also, a non-linear equation for the position of the critical (singular) point is obtained. This equation shows the existence of an additional critical point, besides the standard m-CAK critical point. For a stellar rotation velocity larger than ∼ 0.7 -0.8 V breakup , there exists only one critical point, located away from the star's surface. Numerical solutions crossing through this new critical point, are attained. In these cases, the wind has a very low terminal velocity and therefore a higher density wind. Disk formation in Be stars is discussed in the frame of this new line driven stellar wind solution.
Debris disks are considered to be gas-poor, but recent observations revealed molecular or atomic gas in several 10-40 Myr old systems. We used the APEX and IRAM 30m radiotelescopes to search for CO gas in 20 bright debris disks. In one case, around the 16 Myr old A-type star HD131835, we discovered a new gas-bearing debris disk, where the CO 3-2 transition was successfully detected. No other individual system exhibited a measurable CO signal. Our Herschel Space Observatory farinfrared images of HD 131835 marginally resolved the disk both at 70 and 100µm, with a characteristic radius of ∼170 au. While in stellar properties HD 131835 resembles β Pic, its dust disk properties are similar to those of the most massive young debris disks. With the detection of gas in HD 131835 the number of known debris disks with CO content has increased to four, all of them encircling young (≤40 Myr) A-type stars. Based on statistics within 125 pc, we suggest that the presence of detectable amount of gas in the most massive debris disks around young A-type stars is a common phenomenon. Our current data cannot conclude on the origin of gas in HD 131835. If the gas is secondary, arising from the disruption of planetesimals, then HD 131835 is a comparably young and in terms of its disk more massive analogue of the β Pic system. However, it is also possible that this system similarly to HD 21997 possesses a hybrid disk, where the gas material is predominantly primordial, while the dust grains are mostly derived from planetesimals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.