We demonstrated that miR-200c directly targets SIRT1, eNOS, and FOXO1; via this mechanism, miR-200c decreased NO and increased the acetylation of SIRT1 targets, that is, FOXO1 and p53. FOXO1 acetylation inhibited its transcriptional activity on target genes, that is, SIRT1 and the ROS scavengers, catalase and manganese superoxide dismutase. In keeping, miR-200c increased ROS production and induced p66Shc protein phosphorylation in Ser-36; this mechanism upregulated ROS and inhibited FOXO1 transcription, reinforcing this molecular circuitry. These in vitro results were validated in three in vivo models of oxidative stress, that is, human skin fibroblasts from old donors, femoral arteries from old mice, and a murine model of hindlimb ischemia. In all cases, miR-200c was higher versus control and its targets, that is, SIRT1, eNOS, and FOXO1, were downmodulated. In the mouse hindlimb ischemia model, anti-miR-200c treatment rescued these targets and improved limb perfusion. Innovation and Conclusion: miR-200c disrupts SIRT1/FOXO1/eNOS regulatory loop. This event promotes ROS production and decreases NO, contributing to endothelial dysfunction under conditions of increased oxidative stress such as aging and ischemia. Antioxid. Redox Signal. 27, 328-344.
SummaryTo understand why livers from aged donors are successfully used for transplants, we looked for markers of liver aging in 71 biopsies from donors aged 12–92 years before transplants and in 11 biopsies after transplants with high donor–recipient age‐mismatch. We also assessed liver function in 36 age‐mismatched recipients. The major findings were the following: (i) miR‐31‐5p, miR‐141‐3p, and miR‐200c‐3p increased with age, as assessed by microRNAs (miRs) and mRNA transcript profiling in 12 biopsies and results were validated by RT–qPCR in a total of 58 biopsies; (ii) telomere length measured by qPCR in 45 samples showed a significant age‐dependent shortage; (iii) a bioinformatic approach combining transcriptome and miRs data identified putative miRs targets, the most informative being GLT1, a glutamate transporter expressed in hepatocytes. GLT1 was demonstrated by luciferase assay to be a target of miR‐31‐5p and miR‐200c‐3p, and both its mRNA (RT–qPCR) and protein (immunohistochemistry) significantly decreased with age in liver biopsies and in hepatic centrilobular zone, respectively; (iv) miR‐31‐5p, miR‐141‐3p and miR‐200c‐3p expression was significantly affected by recipient age (older environment) as assessed in eleven cases of donor–recipient extreme age‐mismatch; (v) the analysis of recipients plasma by N‐glycans profiling, capable of assessing liver functions and biological age, showed that liver function recovered after transplants, independently of age‐mismatch, and recipients apparently ‘rejuvenated’ according to their glycomic age. In conclusion, we identified new markers of aging in human liver, their relevance in donor–recipient age‐mismatches in transplantation, and offered positive evidence for the use of organs from old donors.
Early recognition of vulnerable carotid plaques could help in identifying patients at high stroke risk, who may benefit from earlier revascularisation. Nowadays, different biomarkers of plaque instability have been unravelled, among these miRNAs are promising tools for the diagnosis and treatment of atherosclerosis. Inflammation, reactive oxygen species (ROS) and endothelial dysfunction play a key role in unstable plaques genesis. We showed that miR-200c induces endothelial dysfunction, ROS production and a positive mechanism among miR-200c and miR-33a/b, two miRNAs involved in atherosclerosis progression. The goal of the present study was to determine whether miR-200c could be an atherosclerosis biomarker. Carotid plaques of patients that underwent carotid endarterectomy (CEA) were assayed for miR-200c expression. miR-200c was up-regulated in carotid plaques (n=22) and its expression was higher in unstable (n=12) compared with stable (n=10) plaques. miR-200c positively correlated with instability biomarkers (i.e. monocyte chemoattractant protein-1, cicloxigenase-2 (COX2), interleukin 6 (IL6), metalloproteinase (MMP) 1 (MMP1), 9 (MMP9)) and miR-33a/b. Moreover, miR-200c negatively correlated with stability biomarkers (i.e. zinc finger E-box binding homoeobox 1 (ZEB1), endothelial nitric oxide (NO) synthase (eNOS), forkhead boxO1 (FOXO1) and Sirtuin1 (SIRT1)) (stable plaques = 15, unstable plaques = 15). Circulating miR-200c was up-regulated before CEA in 24 patients, correlated with miR-33a/b and decreased 1 day after CEA. Interestingly, 1 month after CEA, circulating miR-200c is low in patients with stable plaques (n=11) and increased to control levels, in patients with unstable plaques (n=13). Further studies are needed to establish whether miR-200c represents a circulating biomarker of plaque instability. Our results show that miR-200c is an atherosclerotic plaque progression biomarker and suggest that it may be clinically useful to identify patients at high embolic risk.
Aims: Anti-Apolipoprotein A-1 autoantibodies (anti-ApoA-1 IgG) promote atherogenesis via innate immune receptors, and may impair cellular cholesterol homeostasis (CH). We explored the presence of anti-ApoA-1 IgG in children (5–15 years old) with or without familial hypercholesterolemia (FH), analyzing their association with lipid profiles, and studied their in vitro effects on foam cell formation, gene regulation, and their functional impact on cholesterol passive diffusion (PD). Methods: Anti-ApoA-1 IgG and lipid profiles were measured on 29 FH and 25 healthy children. The impact of anti-ApoA-1 IgG on key CH regulators (SREBP2, HMGCR, LDL-R, ABCA1, and miR-33a) and foam cell formation detected by Oil Red O staining were assessed using human monocyte-derived macrophages. PD experiments were performed using a validated THP-1 macrophage model. Results: Prevalence of high anti-ApoA-1 IgG levels (seropositivity) was about 38% in both study groups. FH children seropositive for anti-ApoA-1 IgG had significant lower total cholesterol LDL and miR-33a levels than those who were seronegative. On macrophages, anti-ApoA-1 IgG induced foam cell formation in a toll-like receptor (TLR) 2/4-dependent manner, accompanied by NF-kB- and AP1-dependent increases of SREBP-2, LDL-R, and HMGCR. Despite increased ABCA1 and decreased mature miR-33a expression, the increased ACAT activity decreased membrane free cholesterol, functionally culminating to PD inhibition. Conclusions: Anti-ApoA-1 IgG seropositivity is frequent in children, unrelated to FH, and paradoxically associated with a favorable lipid profile. In vitro, anti-ApoA-1 IgG induced foam cell formation through a complex interplay between innate immune receptors and key cholesterol homeostasis regulators, functionally impairing the PD cholesterol efflux capacity of macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.