Spin-based electronics has evolved into a major field of research that broadly encompasses different classes of materials, magnetic systems, and devices. This review describes recent advances in spintronics that have the potential to impact key areas of information technology and microelectronics. We identify four main axes of research: nonvolatile memories, magnetic sensors, microwave devices, and beyond-CMOS logic. We discuss state-of-the-art developments in these areas as well as opportunities and challenges that will have to be met, both at the device and system level, in order to integrate novel spintronic functionalities and materials in mainstream microelectronic platforms.Conventional information processing and communication devices work by controlling the flow of electric charges in integrated circuits. Such circuits are based on nonmagnetic semiconductors, in Technologies based on GMR and MTJ devices are now firmly established and compatible with CMOS fab processes. Yet, in order to meet the increasing demand for high-speed, high-density, and low power electronic components, the design of materials, processes, and spintronic circuits needs to be continuously innovated. Further, recent breakthroughs in basic research brought forward novel phenomena that allow for the generation and interconversion of charge, spin, heat, and optical signals.Many of these phenomena are based on non-equilibrium spin-orbit interaction effects, such as the spin Hall and Rashba-Edelstein effects 6,8,23 or their thermal 24 and optical 25,26 analogues. Spin-orbit torques (SOT), for example, can excite any type of magnetic materials, ranging from metals to semiconductors and insulators, in both ferromagnetic and antiferromagnetic configurations 6 . This versatility allows for the switching of single layer ferromagnets, ferrimagnets, and antiferromagnets, as well as for the excitation of spin waves and auto-oscillations in both planar and vertical device geometries 10,11 . Charge-spin conversion effects open novel pathways for information processing using Boolean logic, as well as promising avenues for implementing unconventional neuromorphic 27,28,29 and probabilistic 30 computing schemes. Finally, spintronic devices cover a broad bandwidth ranging from DC to THz 31,32 , leading to exciting opportunities for the on-chip generation and detection of high frequency signals.
A novel theoretical approach to magnetization dynamics driven by spin-polarized currents is presented. Complete stability diagrams are obtained for the case where spin torques and external magnetic fields are simultaneously present. Quantitative predictions are made for the critical currents and fields inducing magnetization switching, for the amplitude and frequency of magnetization self-oscillations, and for the conditions leading to hysteretic transitions between self-oscillations and stationary states.
The understanding of how spins move and can be manipulated at pico-and femtosecond time scales is the goal of much of modern research in condensed matter physics, with implications for ultrafast and more energy-efficient data processing and storage applications. However, the limited comprehension of the physics behind this phenomenon has hampered the possibility of realising a commercial technology based on it. Recently, it has been suggested that inertial effects should be considered in the full description of the spin dynamics at these ultrafast time scales, but a clear observation of such effects in ferromagnets is still lacking. Here, we report the first direct experimental evidence of intrinsic inertial spin dynamics in ferromagnetic thin films in the form of a nutation of the magnetisation at a frequency of approximately 0.5 THz. This allows us to reveal that the angular momentum relaxation time in ferromagnets is on the order of 10 ps.
The implicit midpoint time-integration technique is applied to the stochastic Landau-Lifshitz-Gilbert (LLG) equation. The numerical scheme converges to the Stratonovich solution in the limit of vanishing time step. It preserves the magnetization magnitude and the main energy balance properties of the LLG equation independently of the time step. The numerical technique is then applied to the study of superparamagnetic state in a small spheroidal particle, and the numerical results are compared with the theory
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.