The results of this study suggest that pregabalin works in part by reducing insular glutamatergic activity, leading to a reduction of the increased functional connectivity seen between brain regions in chronic pain states. The study also supports a role for human brain imaging in the development, assessment, and personalized use of central-acting analgesics.
Objective. Fibromyalgia (FM) is a chronic widespread pain condition that is thought to arise from augmentation of central neural activity. Glutamate (Glu) is an excitatory neurotransmitter that functions in pain-processing pathways. This study was carried out to investigate the relationship between changing levels of Glu within the insula and changes in multiple pain domains in patients with FM.Methods. Ten patients with FM underwent 2 sessions of proton magnetic resonance spectroscopy (H-MRS) and 2 sessions of functional magnetic resonance imaging (FMRI), each conducted before and after a nonpharmacologic intervention to reduce pain. During H-MRS, the anterior and posterior insular regions were examined separately using single-voxel spectroscopy. The levels of Glu and other metabolites were estimated relative to levels of creatine (Cr) (e.g., the Glu/Cr ratio). During FMRI, painful pressures were applied to the thumbnail to elicit neuronal activation. Fibromyalgia (FM) is a chronic widespread pain disorder that affects ϳ2-4% of individuals in industrialized countries (1). Although the underlying etiology of this condition is unknown, dysfunction within the central nervous system has been implicated. Results from functional magnetic resonance imaging (FMRI) (2,3), singlephoton emission tomography (4), and positron emission tomography (5) support this hypothesis.One structure that is consistently found to be associated with augmented evoked pain activity in FM is the insula (2,3). In addition to its function in speech, taste, and auditory systems, the insula is also intimately involved in somatosensory and visceral pain processing (6). It is strategically located in a bidirectional pathway between the secondary somatosensory cortex and the amygdala (6). This anatomic position may give the insula ClinicalTrials.gov identifier: NCT00142597.
Aging is typically associated with declines in sensorimotor performance. Previous studies have linked some age-related behavioral declines to reductions in network segregation. For example, compared to young adults, older adults typically exhibit weaker functional connectivity within the same functional network but stronger functional connectivity between different networks. Based on previous animal studies, we hypothesized that such reductions of network segregation are linked to age-related reductions in the brain's major inhibitory transmitter, gamma aminobutyric acid (GABA). To investigate this hypothesis, we conducted graph theoretical analyses of resting state functional MRI data to measure sensorimotor network segregation in both young and old adults. We also used magnetic resonance spectroscopy to measure GABA levels in the sensorimotor cortex and collected a battery of sensorimotor behavioral measures. We report four main findings. First, relative to young adults, old adults exhibit both less segregated sensorimotor brain networks and reduced sensorimotor GABA levels. Second, less segregated networks are associated with lower GABA levels. Third, less segregated networks and lower GABA levels are associated with worse sensorimotor performance. Fourth, network segregation mediates the relationship between GABA and performance. These findings link age-related differences in network segregation to age-related differences in GABA levels and sensorimotor performance. More broadly, they suggest a neurochemical substrate of age-related dedifferentiation at the level of large-scale brain networks.
Objective Recent scientific findings have reinvigorated interest in examining the role of γ-aminobutyric acid (GABA), the major inhibitory central nervous system neurotransmitter, in chronic pain conditions. Decreased inhibitory neurotransmission is a proposed mechanism in the pathophysiology of chronic pain syndromes such as fibromyalgia (FM). The purpose of this study was to test the hypothesis that decreased levels of insular and anterior cingulate GABA would be present in FM patients, and that the concentration of this neurotransmitter would be correlated with pressure–pain thresholds. Methods Sixteen FM patients and 17 age- and sex-matched healthy controls underwent pressure–pain testing and a 3T proton magnetic resonance spectroscopy session in which the right anterior insula, right posterior insula, anterior cingulate, and occipital cortex were examined in subjects at rest. Results GABA levels in the right anterior insula were significantly lower in FM patients compared with healthy controls (mean ± SD 1.17 ± 0.24 arbitrary institutional units versus 1.42 ± 0.32 arbitrary institutional units; P = 0.016). There was a trend toward increased GABA levels in the anterior cingulate of FM patients compared with healthy controls (P = 0.06). No significant differences between groups were detected in the posterior insula or occipital cortex (P > 0.05 for all comparisons). Within the right posterior insula, higher levels of GABA were positively correlated with pressure–pain thresholds in the FM patients (Spearman's rho = 0.63; P = 0.02). Conclusion Diminished inhibitory neurotransmission resulting from lower concentrations of GABA within the right anterior insula may play a role in the pathophysiology of FM and other central pain syndromes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.