Neurological disorders develop in most people infected with human immunodeficiency virus type 1 (HIV-1). However, the underlying mechanisms remain largely unknown. Here we report that binding of HIV-1 transactivator (Tat) protein to low-density lipoprotein receptor-related protein (LRP) promoted efficient uptake of Tat into neurons. LRP-mediated uptake of Tat was followed by translocation to the neuronal nucleus. Furthermore, the binding of Tat to LRP resulted in substantial inhibition of neuronal binding, uptake and degradation of physiological ligands for LRP, including alpha2-macroglobulin, apolipoprotein E4, amyloid precursor protein and amyloid beta-protein. In a model of macaques infected with a chimeric strain of simian-human immunodeficiency virus, increased staining of amyloid precursor protein was associated with Tat expression in the brains of simian-human immunodeficiency virus-infected macaques with encephalitis. These results indicate that HIV-1 Tat may mediate HIV-1-induced neuropathology through a pathway involving disruption of the metabolic balance of LRP ligands and direct activation of neuronal genes.
Diffusion tensor imaging (DTI) and immunohistochemistry were used to examine axon injury in the rat spinal cord after unilateral L 2 -L 4 dorsal root axotomy at multiple time points (from 16 h to 30 d after surgery). Three days after axotomy, DTI revealed a lesion in the ipsilateral dorsal column extending from the lumbar to the cervical cord. The lesion showed significantly reduced parallel diffusivity and increased perpendicular diffusivity at day 3 compared with the contralateral unlesioned dorsal column. These findings coincided with loss of phosphorylated neurofilaments, accumulation of nonphosphorylated neurofilaments, swollen axons and formation of myelin ovoids, and no clear loss of myelin (stained by Luxol fast blue and 2Ј-3Ј-cyclic nucleotide 3Ј-phosphodiesterase). At day 30, DTI of the lesion continued to show significantly decreased parallel diffusivity. There was a slow but significant increase in perpendicular diffusivity between day 3 and day 30, which correlated with gradual clearance of myelin without further significant changes in neurofilament levels. These results show that parallel diffusivity can detect axon degeneration within 3 d after injury. The clearance of myelin at later stages may contribute to the late increase in perpendicular diffusivity, whereas the cause of its early increase at day 3 may be related to changes associated with primary axon injury. These data suggest that there is an early imaging signature associated with axon transections that could be used in a variety of neurological disease processes.
Infection with the human immunodeficiency virus (HIV) selectively targets the basal ganglia resulting in loss of dopaminergic neurons. Although frequently asymptomatic, some patients may develop signs of dopamine deficiency de novo. Accordingly, they are highly susceptible to drugs that act on dopaminergic systems. Both neuroleptics and psychostimulants may exacerbate these symptoms. Experimental evidence suggests that viral proteins such as gp120 and Tat can cause toxicity to dopaminergic neurons, and this toxicity is synergistic with compounds such as methamphetamine and cocaine that also act on the dopaminergic system. In addition, other neurotransmitters that modulate dopaminergic function, such as glutamate and opioids, may also modify the susceptibility of the dopamine system to HIV. Therefore, a thorough understanding of the mechanisms that lead to this selective neurotoxicity of dopaminergic neurons would also likely lead to the development of therapeutic modalities for patients with HIV dementia.
Inflammation, demyelination, gliosis and axonal degeneration are pathological hallmarks of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis. Axonal damage is thought to contribute to irreversible damage and functional impairment, but is difficult to quantify. Conventional MRI has been used to assess the inflammatory and demyelinating aspects of MS lesions, but more sensitive and specific methods are needed to identify axonal damage to monitor disease progression and to determine efficacy of putative neuroprotective agents. We used high resolution diffusion tensor imaging (DTI) and fibre tracking to examine the spinal cord in rats with focal dorsal column inflammatory or demyelinating lesions to determine whether DTI measures can be used to detect pathology at the site of the focal lesion and to measure axonal damage in tracts distal to the focal lesion. Distant from the focal lesion, total axon counts, degenerating axon counts and SMI-31 staining, but not Luxol fast blue staining, were significantly correlated with fractional anisotropy, axial diffusivity and radial diffusivity, all of which are derived from the DTI data. These data suggest that high resolution DTI may be a more sensitive method than conventional imaging for detecting axonal damage at sites distant from inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.