In this study, the structural, electronic, elastic, phonon vibration, thermodynamic features, and optical properties of the orthorhombic phase of (space group Pnma) C a H f S 3 were examined by first-principles calculations utilizing the plane wave ultrasoft pseudopotentials in generalized gradient approximations (GGAs) and with Hubbard on-site correction (DFT + U). To improve the value of the band gap, the exchange correlation potential is also approximated with Hubbard correction (GGA + U). The equilibrium state properties such as lattice parameters, unit cell volume, bulk modulus, and its derivative were calculated and are in good agreement with the existing data. The mechanical properties such as bulk modulus, shear modulus, Young’s modulus, and elastic anisotropy were determined from the obtained elastic constants. The ratio of bulk modulus to shear modulus confirms that the orthorhombic phase of C a H f S 3 is a ductile material. In addition, the longitudinal sound velocity, transverse sound velocity, and Debye temperature for C a H f S 3 have been computed. The absence of negative frequencies in the phonon dispersion curve and the phonon density of states confirm that C a H f S 3 in the orthorhombic phase is dynamically stable. The thermodynamic parameters such as free energy, entropy, and heat capacity were examined with variations in temperature. Finally, the absorption coefficient, dielectric constant, energy loss function, reflectivity, and refractive index are discussed in detail in the spectral range 0–1.6 Ry (21.77 eV). The polarizations along (100), (010), and (001) directions significantly show different optical responses.
Chalcogenide perovskites offer superior thermal and aqueous stability as well as a benign elemental composition compared to organic halide perovskites for optoelectronic applications. In this study, the structural, electrical, elastic, phonon dispersion, and thermodynamic features of the orthorhombic phase of chalcogenide perovskite CaZrS3 (space group Pnma) were examined by first principles calculations utilizing the plane wave pseudopotentials (PW-PPs) in generalized gradient approximations (GGA). The ground state properties such as lattice parameters, unit cell volume, bulk modulus, and its derivative were calculated and are in a good agreement with existing findings. The mechanical properties such as bulk modulus, shear modulus, Young's modulus and elastic anisotropy were calculated from the obtained elastic constants. The ratio of bulk modulus to shear modulus confirms that the orthorhombic phase of CaZrS3 is a ductile material. The absence of negative frequencies in phonon dispersion curve and the phonon density of states give an indication that the structure is dynamically stable. Finally, thermodynamic parameters such as free energy, entropy, and heat capacity were calculated with variation in temperature. The estimated findings follow the same pattern as previous efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.