By coupling femtosecond pulses at lambda - 1.55mum in a short length (Z - 95 cm) of photonic crystal fiber, we observe the simultaneous generation of two visible radiation components. Frequency-resolved optical gating experiments combined with analysis and modal simulations suggest that the mechanism for their generation is third-harmonic conversion of the fundamental pulse and its split Raman self-shifted component.
Using experimental feedback, we demonstrate that a chirped-pulse amplifier can adaptively learn to compensate for the higher-order phase dispersion that is inherent in the amplification process. A genetic algorithm-based search routine is used to repetitively update the pulse phase in a programmable pulse stretcher during a plasma breakdown experiment to maximize the magnitude of spectral blueshift. Reductions in pulse duration from 37 to 30 fs and substantially better wing structure are typically obtained as a result of the optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.